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1. Introduction

“If we do not take losses into account and regardn, ¢, and i as real num-
bers, it can be seen [...] that a simultaneous change of the signs of e and
w has no effect on these relations. This situation can be interpreted in
various ways. First, we may admit that the properties of a substance are
actually not affected by a simultaneous change of the signs of ¢ and p.
Second, it might be that for ¢ and . to be simultaneously negative con-
tradicts some fundamental laws of nature, and therefore no substance
with e < 0 and p < 0 can exist. Finally, it could be admitted that sub-
stances with negative = and . have some properties different from those
of substances with positive € and .. As we shall see in what follows, the
third case is the one that is realized. It must be emphasized that there
has not so far been any experiment in which a substance with e < 0 and
1 < 0 could be observed.”

Victor Veselago, 1968



1. Introduction

Metamaterials & Meta Atoms

The introductory quote is taken from a paper by Victor Veselago published in the
late 1960s [[Ves68||, which is nowadays regarded as the birth of the metamaterial
idea. He explores the idea of a material having both a negative electric permit-
tivity € and magnetic permeability 1 and concludes that there are a number of
interesting phenomena associated with this situation. At that time, Veselago was
looking for and talking about natural materials in which such a situation could
be realized. In particular, he pointed out that in order for such a system to be
realized, it would require two different mechanisms to achieve negative values
for ¢ = gper and p = popry. Here, €9 and pg are the vacuum and permittiv-
ity and permeability and €, and p, the relative permittivity and permeability in
the medium. For the electric part, the condition is easily achieved in a plasmfﬂ
at frequencies below the plasma resonance. The lack of magnetic monopoles
requires a different approach for the magnetic part of the condition which, ac-
cording to Veselago, could be achieved by the dipole moment of spins.

It was decades later that John Pendry and his group picked up Veselago’s idea
and proposed a way to achieve this condition with what we today call metama-
terials [Pen+96; |Pen+99; Pen00]. The novelty of their approach lay in the idea
of mimicking the function of atomic spins and the free electron plasma using
artificial atoms. There is one central condition that has to be fulfilled in order for
these meta-atoms (MAs) to form an effective medium that can then be described
by relative parameters ¢, and w,: Their size and spacing has to be much smaller
than the wavelength in the medium at the frequency of operation. Subsequent
experimental implementations by Shelly Schultz, David Smith and their grou
[Smi+00; She+01§ [SSSO1}; |Sch+06|] made use of this fact by working in the
microwave regime where meta-atoms can be millimeters in size. Their meta-
material implementation consisted of two types of meta-atoms fabricated using
easily accessible printed circuit board (PCB) technology. Split-ring-resonators
(SRRs) served as resonant magnetic dipoles while an array of metallic wires
provided a negative €, background. The combination of these elements made
it possible to demonstrate a negative-index passband and cloaking properties in
the microwave regime.

Since those early days, metamaterials have come a long way. In the wake of
promises of tremendous magnitude such as optical cloaking [AEOS|| and super-

'Such as the free electrons in a metal.



resolution imaging [LL12]], many other related areas of research have merged
with the original idea. Nowadays, metamaterial research covers a multitude of
different topics from plasmonic waveguides [NB11]] to redirecting sound waves
for tsunami-protection [Far+08].

In the more conventional direction that deals with influencing material param-
eters, one of the main developments has been a constant push towards higher
frequencies with the ultimate goal of optical metamaterials in mind.

This development towards higher frequencies, however, brought about a new
challenge as losses in resonant, metallic meta-atoms scale inversely with their
physical dimensions and degrade or even completely destroy the effects for
which those metamaterials were intended [Anll1]]. Several routes have been
suggested that aim at mending or circumventing this problem such as the idea
of compensating losses with gain in the meta-atoms [Boa+11]]. The absence
of Ohmic losses in superconductors eventually led to the idea of using them
to build metamaterials. However, it only became apparent later that they have
much more to offer, as we shall see in the next section.



1. Introduction

Superconducting Metamaterials

Although superconductors have originally been used in metamaterials as a low-
loss alternative to normal metals, they also offer a number of other advantages
[Anl11; JUAT14]. Fig. shows a schematic overview of superconducting cir-
cuits that have been proposed or used as superconducting meta-atoms. In the
following, I will briefly summarize those advantages and explain some of the
new opportunities that arise from effects that are unique to superconductors.
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Figure 1.1.: Superconducting meta-atoms and implementations. (The crosses
symbolize Josephson Junctions.) a, Magnetically coupled meta-atoms. Left
column: Different variations of the split-ring resonator. Central column: From
top to bottom: Wood-cut type flux quantization MA, spiral. Right column: rf-
SQUID, dc-SQUID, and qubit. b, Electrically coupled “wire” structures. Upper
left: Standard type; provides a negative ¢, below its plasma frequency. Upper
right: JJ decorated wire; the plasma edge is tunable by running a current through
the wire. Lower left: SQUID decorated wire; The plasma edge is tunable by DC
magnetic field. Lower right: SQUID-loaded resonator; provides a negative e,
above its resonance frequency.

QO
L

Low Losses and Scalability

The first version of a low-loss superconducting metamaterial consisting of a Nb
wire array and thin-film Nb double split-ring resonators (DSSRs) was demon-
strated by Ricci et al. [ROAOS] in a rectangular waveguide. The authors were
able to produce a negative index passband using a geometry similar to the first
paper by Smith et al. [Smi+00]. Losses in superconducting, resonant meta-
atoms do not scale with dimensions the way they do in normal metallic res-



onators [RA06; |Anll11]]. Therefore, meta-atoms made from superconductors
can, in principle, be scaled down in size to operate at higher frequencies without
losing their low-loss properties. One fundamental upper limit for this scenario
is the gap frequency

2A
fa= 7 (1.1)

Here A is the superconducting energy gap. Above f,, the energy of the photons
incident on the superconductor is sufficient to break Cooper pairs. It has been
shown that up to this frequency, meta-atoms made from low 7, materials such
as Nb [Jin+10; Eng+13]] or NbN [Wu+11} Zha+12] can exhibit quality factors
far exceeding those of comparable gold meta-atoms.

On the other hand, meta-atoms made from high 7. materials such as YBCO
[Gu+10; Sin+13]] have a higher gap frequency but suffer from structural or fab-
ricational issues that significantly limit the quality of their resonances.

Tunability

Non-superconducting, tunable resonant circuits often achieve tunability through
tunable capacitors while the inductive part of the circuit is constant. At room-
temperature, effects such as the voltage-dependent thickness of the depletion
zone of a semiconductor PN junction can be used to build tunable capacitors.
The lossless nature of Cooper pair transport, however, leads to the existence of
additional (tunable) inductive contributions to the resonance associated with the
inertia of the Cooper pairs. In general, these fall into two categories:

First, the kinetic inductance of a superconducting lead Ly;, depends on the den-
sity of Cooper-pairs ng in the superconductor. This, in turn, depends on a num-
ber of external parameters such as temperature 7', magnetic field H and den-
sity of an externally applied current J. All of these have upper critical values
T, H and J., respectively, above which the material is no longer supercon-
ducting. When one of those critical values is approached from below, ng be-
comes highly sensitive to variations in any of the parameters. Such effects have
been used to demonstrate the tunability of resonances by temperature [RA06
Wu+11]] and magnetic field [Ric+07; Jin+10]. This method, however, is usually

2 H,» for type II superconductors.



1. Introduction

associated with increased losses and, in case of strong magnetic fields, entry of
Abrikosov vortices into the superconductor.

The second category is the one that this work is primarily concerned with. It in-
volves the Josephson junction (JJ) which, in general, is a weak link between two
superconducting leads such as a tunneling barrier. Voltage across and current
through the junction are governed by the Josephson relations

I = I.singp, (1.2a)
(I)O &p

%4 — 1.2b
27 Ot (1.20)

Here, &g = 2% is the flux quantum, ¢ is the gauge-invariant phase difference
between the superconducting wave-functions on either side of the junction and
I is the critical current of the junction. From Eq. (I.2aHI.2b) one can show
that for small variations of the phase around a constant value g, the junction
behaves as an inductor with an inductance

Li(p0) = 5

—_— 1.3
2m 1. cos g (13)

called the Josephson inductance.

A superconducting loop interrupted by a Josephson junction is called single
junction superconducting quantum interference devices ((rf-)SQUIDs). In this
case, L; becomes tunable through a constant magnetic field normal to the area
of the loop. JJs and SQUIDs can be included as tunable elements in supercon-
ducting circuits [CBLO7}; |Abd+13; Ovc+13] and also serve as building block
for superconducting quantum bits [CWO08; DS13]] and metamaterials. The latter
was proposed by different groups [DCLO6; [LTO7; DCLOS; MG10] as a tunable
alternative to metamaterials based on conventional designs. This concept, which
will be detailed in the following chapters, has only recently been implemented
experimentally [Jun+13; But+13aj; Tre+13].

Nonlinearity

While the aforementioned effects that cause tunability, all rely on nonlinear
properties of the superconductor in some way, the high frequency signals of in-
terest for a metamaterial application are often assumed to be very small. There-
fore, simplified concepts (like the kinetic and Josephson inductance mentioned



above) can be applied. They facilitate the modeling and integration of super-
conductors and Josephson junctions into well-established frameworks such as
transmission line theory. There are, however, several intriguing effects unique
to nonlinear meta-atoms [LSK14] that can consequently only be explored if the
small-signal regime is left. Non-superconducting, metallic meta-atoms are in-
trinsically only very weakly nonlinear, so additional elements (such as varactor
diodes or other semiconductor devices) are included into the meta-atom struc-
tures to achieve typical nonlinear effects such as bistability [Wan+08} |Din+12]].
Superconductors and Josephson junctions, on the other hand, can be used to
build meta-atoms that exhibit a high degree of intrinsic nonlinearity [LT13};
Jun+14; VDS09].

Quantum Effects

Although superconductivity and the Josephson effect are quantum phenomena,
their macroscopic nature often allows us to describe circuits containing them
using classical dynamic equations. Under the right conditions, however, it is
possible to access quantized states in the potential of the respective devices. If
said potential is anharmonic enough to address the transition from the ground
state to the first excited state individually, the circuit is called a quantum bit
(qubit).

Metamaterials made from qubits promise a number of novel effects that have
been discussed theoretically [JUA14]. In addition, quantum materials (such as
large arrays of qubits) are also a candidate for quantum simulation, since com-
plex (and classically unsolvable) Hamiltonians can be mapped onto these struc-
tures. As fabricating large numbers of identical qubits is a very challenging task,
experimental progress on this subject has only started very recently [Mac+13;
Macl3].
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This Work

In this work I investigate the nonlinear properties of rf-SQUID meta-atoms with
a focus on multi-stability.

I start in chapter 2 by introducing the theoretical background and the concepts,
that are used throughout the rest of the thesis. This includes a brief introduction
into the field of metamaterials with a focus on planar magnetic meta-atoms.
Then, I discuss how such meta-atoms have to be treated when placed inside
waveguides rather than free space. This is important because the different types
of waveguides used in the presented experiments have to be taken into account
in the analysis. This section also includes an introduction to the transmission
line model, which will later be used to model coplanar waveguides containing
SQUIDs. The third section of this chapter contains the basics of superconduc-
tivity, flux quantization and the Josephson effect. Based on this theoretical foun-
dation, the rf-SQUID meta-atom is introduced in section 4. For this purpose, I
elaborate on how the different effects come together and derive the fundamental
equation that describes the dynamics of the SQUID as a nonlinear oscillator. I
also analyze this equation in the limits of weak and strong driving and show
how the intrinsic nonlinearity can be treated in a simplified model.

Chapter [3]is centered around the details of the experiment and the experimental
techniques. It opens with a description of the samples and how they are designed
and fabricated. Over the course of this work, several generations of samples
were produced by different foundries. Of these, I only introduce the ones for
which I also show experimental data later on. Their parameters are given in
a table at the end of the section. Next, I introduce the setup that was used
for most of the measurements including the mounting of the sample and the
microwave electronics. Through some modification, this setup can be used for
pulsed measurements as outlined in section 3. In section 4, I will show how
the transmission line approach can be used to model to our particular setup.
The fifth section is dedicated to another experimental setup that was used to
measure two-dimensional SQUID arrays using a rectangular waveguide.

The results of this work are presented in chapter[d] It starts with a novel theoret-
ical treatment of the periodically driven rf-SQUID based on the rotating wave
approximation. The implications of the model are then analyzed and its results



compared to numerical simulations. The model predicts the existence of a dy-
namic multi-stability under certain driving conditions. This is of special interest
in the context of metamaterials, as the SQUID meta-atom responds differently
to the microwave depending on which state it occupies. Section 2 contains
measurement results of single SQUIDs as well as one- and two-dimensional
arrays thereof in the weak driving limit. It also includes a brief discussion of
the effects of coupling in two-dimensional SQUID arrays. Then, in section 3,
the existence of multi-stability is demonstrated experimentally using hysteretic
power sweeps which show a very good agreement with the theory developed at
the beginning of this chapter. The idea of switching between the states using
microwave pulses is explored in the last section both in experiment and numer-
ical simulations. Using this approach, a SQUID loaded waveguide can be used
as an all-optical microwave switch.

Finally, in chapter[5] I will conclude this thesis by a summary of the results and
an outlook towards future research.






2. Background

“Although this may seem a paradox, all exact science is dominated by
the idea of approximation. When a man tells you that he knows the exact
truth about anything, you are safe in inferring that he is an inexact man.”
Bertrand Russel

Chapter |2 deals with the scientific foundation upon which this work is
built. As the introductory quote implies, every aspect outlined in the fol-
lowing is based on some sort of approximation. Seeing that we arrive at
conclusions by building theory upon theory, approximation upon approx-
imation, it seems almost unreasonable to believe that the results can
indeed be explained by the supposed underlying theories. It is there-
fore imperative that we understand these approximations, their limita-
tions and their implications for the theories based on them.

This chapter is intended to introduce the reader to the physical concepts
and considerations necessary to the understanding of the results. It
summarizes information found in literature that is nowadays considered
canon. Therefore, instead of citing every concept or formula individu-
ally, each section contains at its beginning a short list of textbooks, from
which the information is taken.

11



2. Background

2.1. Metamaterials & Meta-Atoms

In this section, I will discuss the idea of a magnetic metamaterial, its connection
to the present work and the description of planar meta-atoms. As this is mostly
limited to the application of the theory of classical electrodynamics in media
and mechanics, the reader is referred to textbooks such as [Jac06] or [LLIS].

2.1.1. Magnetic Metamaterials

The basic idea of electromagnetic metamaterials was already outlined in the in-
troduction. Here we will focus on their working principle especially for those
variants that interact with the magnetic field component of electromagnetic
waves. Their behavior may be best understood from Maxwell’s macroscopic
equations in media.

vV.-D = p, (2.1a)
V-B = 0, (2.1b)
. 9B
E+=2= = 2.1
VxE+ 0, (2.1c)
. 0D -

Here, E and B are the electric and magnetic field, D and H are the displace-
ment and magnetizing field for the isotropic, linear case and p and ; are the
charges and currents in the medium. The relation between the fields can be ex-
pressed through the constitutive relations in terms of the magnetization M and
polarization P of the medium,

]l

= eOE +P= eo (14 xe) E = egerE, (2.2a)
o (H -+ 31) = o (1+ xon) H = pope B. (2.2b)

ol
|

Here, x. and x,, are the electric and magnetic susceptibility, respectively.

In conventional media, the relative parameters €, and pu, are spatial averages
over a volume of the material containing a certain number of (microscopic)
atoms. Consequently, this macroscopic approach is only valid if the spatial

12



2.1. Metamaterials & Meta-Atoms

variations of the fields are small over that volume. If we consider light with in-
creasing frequency f, the wavelength of the light in the medium A = (f \/571)_1
decreases. Hence, this method ultimately breaks down as A becomes compara-
ble to the distance between the atoms. Thus, the spatial averaging is usually
done over a volume containing at least N> atom with N ~ 100.

Let us now limit the discussion to a frequency spectrum for which the variation
of the fields is small over length-scales large enough to encompass several elec-
tromagnetically active, artificial structures, which we call meta-atoms. If these
couple more strongly to the fields than the atoms they are made of, the macro-
scopic parameters of this meta-material may deviate strongly from that of the
host material. In fact, they may be distinctly different from that of any natural
material as proven by the demonstration of effects such as the negative index of
refraction [[SSSO1]] mentioned earlier.

In the following, we will analyze a single, planar, magnetic meta-atom as well
as one- and two-dimensional “materials” made from arrays of such meta-atoms.
As the name suggests, we assume that they only exhibit a relevant coupling to
the magnetic field component.

2.1.2. Planar Magnetic Meta Atoms

The meta-atom investigated in this thesis is the single junction SQUID. Like
many of the other magnetic meta-atoms (cf. Fig.[I.Th), it couples to the mag-
netic field through currents that are induced in a planar loop structure. As
these meta-atoms are usually electrically self-resonant, their behavior can be
described by that of a damped and driven oscillator. Microscopically, a driving
magnetic field H, that is constant over the loop area A and parallel to its surface
normal A, is related to the driving flux in the loop by

Doy = fo / HedA = po|He| A, (2.3)

while the total flux in the loop ® is the difference between the external flux and
that generated by counteracting screening current I in the loop with inductance

"Later, we will see that under certain conditions this averaging can become one- or two-
dimensional with N and N2 atoms, respectively.

13



2. Background

L

b = By — L. 24
Without loss of generality, we will assume all fields to point in z direction and
the loop to lie in the xy-plane. The magnetic moment of the meta-atom (which
has to have the opposite sign compared to the external field at zero frequency)
created by the screening current can be written as

A
m=—IsAe, = Z ((I) - (I)ext) €z, (2.5)

where we used Eq. (2.4). To derive a value for /i, of a volume V = [3 filled with
such meta-atoms (with loop radius  and meta-atom periodicity in all directions
d), we have to find the magnetization M of that volume

L1 .
M = sz:mz (2.6)

Combing Eq. (2.2b) with Eq. (2.3) and Eq. (2.6) we can calculate the averaged,
relative permeability:

M
g o= 1+ ||m|éz (2.72)
3/ @
14 % (2) <<1> _ 1) (2.7b)
. , ext
~ %/—/
F X¢

= 1+ Fxy (2.7¢)

Here, I chose the definition of a single meta-atom flux susceptibility x4 in anal-
ogy to the material parameters defined in Eq. (2.2b)).

It should be pointed out that the assumptions we are making (i.e. linearity and
isotropy of the medium) are in fact not fulfilled for the problems discussed in
the following chapters (i.e. the SQUID metamaterial). The relations may still
be used, however, if applied correctly. The problem of anisotropy, for example,
can be treated in a quasi-isotropic fashion if the structure of the fields is well
known (i.e. with light of a specific polarization or in a waveguide). Linearity
can also be assumed under some conditions. In our case, the effect of a mag-
netic metamaterial in a waveguide with propagating waves of one frequency
can be mapped to a relative permeability that depends on the frequency w and
amplitude | Hy| of the incident wave (1, = pur(w, |Ho)) ).

14



2.2. Meta-Atoms in Waveguides

2.2. Meta-Atoms in Waveguides

As mentioned in the previous section, I am going to present theories and exper-
iments that concern the interaction between meta-atoms and electromagnetic
waves, and more specifically, their magnetic field component. In such experi-
ments, however, meta-atoms are usually not isolated structures interacting with
plane waves. Instead, the waves propagate in waveguides that confine the fields
in one or two dimensions. Thus, in order to understand the coupling between
wave and artificial atom, it is essential to know the type and field distribution of
the propagating mode in the waveguide. In this section, I will therefore briefly
introduce two types of waveguides that were used for the presented measure-
ments, the transmission line model, and the concept of microwave network
analysis. The latter provides the framework for a simplified treatment of meta-
atoms in waveguides. Further information can be found in various microwave
textbooks such as [Poz05; |Col91]).

Placing the meta-atoms in waveguides offers several distinct advantages for our
application. First, the local field structure is usually well-defined and, in case
of low order modes, usually relatively simple. This is particularly important
because almost all metamaterials are anisotropic. Second, the confinement leads
to an enhanced coupling between fields and meta-atoms. Third, for microwaves,
most radiation sources, detectors and other components already use waveguides
in form of coaxial cables. Transitioning between those and other waveguides
is much easier and more efficient than coupling to free space and back into a
waveguide. To ensure low reflections at transitions between two waveguides,
their impedances have to be matche Fourth, the physical size of waveguides
in the confined dimensions is on the order of the wavelength, which makes them
comparatively compact and simplifies their integration into a cryogenic setup.

2.2.1. The Coplanar Waveguide

Superconducting electronic structures, such as SQUIDs, are usually fabricated
on-chip using thin films and lithographic techniques also known from semicon-
ductor chips. Waveguides used with such elements are often fabricated using the

’The wave impedance of a material with constitutive parameters € and jis Zy = /1 /€. More
about impedance matching can be found in subsection[2.2.3|

15



2. Background

same process and are themselves planar structures such as microstrips, slotlines
or coplanar waveguides (CPWs).

Figure 2.1.: a, Sketch of a coplanar waveguide. A metallic layer (black) forms
a coplanar structure on top of a dielectric substrate (gray) of height h. The
width of the central conductor and gap are shown as w and g, respectively.
A microwave, propagating in z direction in the TEM mode (indicated by the
green arrows) is shown with the associated electric (red) and magnetic (blue)
field lines. Note that the magnetic field is perpendicular to the substrate surface
in the gaps between central conductor and ground plane. b, Magnetic field
(arrows) of a CPW structure in the qTEM mode calculated using finite element
software. The picture shows a cut through the structure perpendicular to the
propagation direction with some of the waveguide visible in the top half and the
(white) inside of the dielectric in the bottom half.

The latter approach was chosen for the presented work as it offers the strongest
coupling between the waveguide and the magnetic meta-atom without electrical
contact. The CPW consists of a planar metallic structureﬂ on top of a dielec-
tric substrate (cf. Fig.[2.Th). A central conductor of width w is separated from
two ground planes by a gap of width g. The ground planes are usually several
times wider than w + 2¢g. Being a two-conductor waveguide, the CPW supports
a quasi transverse electromagnetic (QTEM) mode starting from zero frequency.
In this mode, the field structure is particularly favorable for the present exper-
iment. In the gaps between central conductor and ground planes, the magnetic
field component is perpendicular to the chip surface, while the electric field is
parallel to it. Thus, a flat magnetic meta-atom placed in the gap will not only see
the maximum projection of the field onto its surface normal, it will also profit

3The thickness of the metallic layer is usually much smaller than all the other occurring char-
acteristic length scales.
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2.2. Meta-Atoms in Waveguides

from an increased coupling as the magnetic field lines are concentrated into the
gap.

Another advantage of the CPW in the present experiment is related to the fact
that it supports a mode at zero frequency. By running a direct current (dc)
through the central conductor of the waveguide, it is possible to apply a static
magnetic field to the meta-atoms located in the gap without the need for an
external coil. This magnetic field bias will be of importance later on, as it is the
main tuning-parameter for the SQUID meta-atoms presented in this work.

Naturally, there are also some drawbacks to this approach. The semi-open na-
ture of the waveguide leaves the structure open to couple to modes in its envi-
ronment. This is especially true if a strong impedance mismatch is introduced
into the CPW in which case it acts as an antenna, radiating into the surrounding
space [But14]].

Impedance matching in this case can be done using analytical expressions such
as the ones found in [[SimO1]. In practice, however, geometries are often more
complicated than the idealized example seen in Fig. so that it is usually
more convenient to use numerical methods. (See appendix for details.)
Nevertheless, I will discuss some aspect of the simplified model that we will
use again later.

Consider a wave propagating in a CPW along the +z direction. In contrast to
a wave in vacuum, electric and magnetic fields are now present in two dif-
ferent media (namely, the dielectric substrate and the vacuum, gas or fluid
above the waveguide). The properties of the wave (such as its phase veloc-
ity vpn, = ¢/y/Erfir) are then determined by effective parameters. For a CPW
with an infinitely thick dielectric in vacuum, for example, the effective, relative
permittivity is €, . = (€r + 1)/2 assuming e, is the relative permittivity of the
substrate which occupies the lower half-space while the upper half is is vacuum
(with e, = 1). Later on, a similar concept will be used to derive a effective,
relative permeability resulting from the presence of a metamaterial.

2.2.2. The Rectangular Waveguide

While the coplanar waveguide offers a solid basis for the investigation of sin-
gle meta-atoms or chains thereof, it is hardly an ideal choice for large-area,
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2. Background

two-dimensional arrays or even three-dimensional metamaterials due to its ge-
ometry and field distribution. An alternative that has been shown to work well
for metamaterials made from superconducting split-ring resonators
is the rectangular waveguide. As shown in Fig.[2.2] it is a tube with a
rectangular cross section made entirely from metal. The interior can be filled
with a dielectric but for our purposes can be considered empty, initially. As it is
a one-conductor waveguide, it does not support a mode at zero frequency. In-
stead it supports a number of modes, the lowest of which is the first transverse
electric mode (TE;(p) which will be the one used for the presented experiments.
The frequency range between the lowest mode and the second mode (TEqy)
sets the limit of operation for this waveguide if we want to ensure that only one
mode can propagate. In this type of waveguide, modes, field distributions and
impedances can safely be calculated using analytic expressions (i.e. found in
[Poz03]]) as the real devices are usually very well described by the formulas due
to their simple geometry. This setup can hold metamaterials with cm?-size di-
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GiiE
A A \\—=>/1
LS Sy N\ g
XXt f L\ 7 S
y z X LR O e A BT o g
TL T_ z
X

Figure 2.2.: a, Sketch of a rectangular waveguide. The fields for a microwave,
propagating in z direction in the TE;¢ mode, are shown as red and blue arrows
corresponding to electric, and magnetic field vectors, respectively. Their width
indicates the strength of the fields. Note that this is a projection onto the z-
y plane and the magnetic field also has components in z direction as shown
in b. b, Magnetic field (arrows) of a rectangular waveguide in the TE;g mode
calculated using finite element software. The picture shows a central cut through
the structure perpendicular to the y axis.

mensions but suffers from a few drawbacks for our cause: A dc magnetic field
has to be applied externally (i.e. by a coil situated outside the waveguide). It
also occupies more physical space, which can be a problem in a cryogenic sys-
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2.2. Meta-Atoms in Waveguides

tem and mounting the samples can be challenging as shall be explained in more
detail in section

2.2.3. The Transmission Line Model

A very useful approach that can be used to model waveguides in terms of circuit
theory is the transmission line model. It states that in the TEM mode of any two-
conductor waveguide, we describe a electromagnetic wave defined by E and H
by a dual model defined by voltage and current. The telegrapher’s equations

c‘)V’(z,t) _ P ,8['(Z,t)
—a, = —R' I'(2,t) — L o (2.82)
8[’(2,t) . Ty ,8V’(z,t)

92 = -G V'(zt)-C o (2.8b)

take the place of Maxwell’s equation in this description. The quantities L',C’,R’
and G’ are the inductance, capacitance, resistance and conductance per unit
length of the waveguide (cf. Fig.[2.3) and have to be calculated for the specific
geometry of the waveguide in question.

~
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Figure 2.3.: Schematic representation of the transmission line model for a
waveguide section of length 6z. The impedance of the transmission line
(Eq. (2.11)) was derived for the case lims, o

In the following, we will use an assumption that is trivial in case of “normal”
network elements such as inductors, capacitors and resistors but becomes non-
trivial if we introduce nonlinear elements into the circuit. For now, we can claim
that when we apply a wave of only one frequency w to the system, all voltages

19
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and currents can be written using the same time dependence such that
V(z,t) = V(2)-e“ +cec., (2.9a)
I'(z,t) = I(z) %' +cec.. (2.9b)

Later, I will show that for our particular (nonlinear) system, this assumption can
still be retained. Under this assumption Eqns. and [2.8b| simplify to

d‘;iz) = —(R +iwLl)I(z) (2.10a)
aIC) (o g iwc V), (2.10b)

dz

and the line impedance of the transmission line can be defined as

R +iwl/ L

Swh 2 @.11)

G+ wC’ c’
Here, the last approximation is true if the losses are negligible. In practice, the
impedance of the waveguide containing the metamaterial has to be matched to
that of the other waveguides in the setup (i.e. coaxial cableﬂ. The reason for

this is that the voltage reflection at the interface between a transmission line
with line impedance Z; to another with Z5 is

Zoy — 7
r_ 2 1

==\ 2.12
Zo+ 7y ( )

Consequently, reflections can only be avoided if Z; = Z,. The main reason
why avoiding reflections is so important, is that they lead to standing waves
which, for our case, can be considered to be unwanted, parasitic effects.

2.2.4. Microwave Network Analysis

So far, I have introduced a framework that allows us to treat a wave, traveling
in a waveguide, using an equivalent electric circuit description. Next, I will

*In the context of this work, the system impedance, to which all components have to be matched,
is 50 Q.
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2.2. Meta-Atoms in Waveguides

introduce a method that will allow us to model the scatting properties (i.e. re-
flection and transmission) of a transmission line loaded with meta-atoms. The
resulting scattering matrix .S is a quantity that can be measured directly using,
for example, a vector network analyzer.

For an electrical network with /N ports, we can define the impedance matrix 2
with elements

Vi

Zij = — ) (2.13)

Ij I,=0V k#j
Here, V;, and I, refer to the voltages and currents at port ¢ = 1..N, respectively.
The condition I, = 0V k # j means that when driving port j with a current /;,
all other ports are left open. We are also implicitly making the same assumption

that was already used in Eqns. and [2.9b]

The voltages and currents can be written as the amplitudes of two waves, one
propagating into and one propagating out of the port.

Vo, = VI4+V-, (2.14a)
I, = I —1I,. (2.14b)

The elements of the scattering matrix can then be defined as

Sij = . (2.15)

I V=0V k#j
Each complex element relates the voltage amplitude and phase of the wave leav-
ing port 7 of the device to that of the wave going into the device at port j. The
condition V,:r = 0V k # j means that all ports other than the driven port j
are terminated with a matched load. The scattering matrix can be expressed in
terms of the impedance matrix through the relation

S =(Z - Zy1)(Z + Zy1) 71, (2.16)

where 1 is the identity matrix of rank /N assuming the system impedance is Zy
at all ports.

For N = 1, Eq. (2.16) reduces to Eq. (2.12) as it should. In this experiment,
however, we only deal with two-port networks (N = 2), so the transmission
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from port 1 — 2 and 2 — 1 can be identified as So; and Sis, respectively,
while reflections on ports 1 and 2 are S7; and S5».

Although the magnitude of each of the elements of the scattering matrix | S|
is the ratio between incoming and outgoing voltages, the value is often given in
dB. In this case |S;;| [dB] is the (logarithmic) ratio between the power of the
incoming and outgoing waves. The conversion between the two is

|Si] [dB] = 20 - logy(]Si;)- (2.17)

Finding the Z matrix: ABCD Parameters

The model outlined in the last subsection relies on the fact that we already know
the impedance matrix Z of the scatterer for which we want to calculate the .S
matrix. If we know the circuit representation of the device, Z can be found
replacing the elements of the circuit with their impedances and applying Kirch-
hoft’s laws. Although this is in principle a trivial task, the results may become
quite unintuitive for large networks. An alternative of deriving the impedance
matrix for N = 2 is the method of ABCD parameters. Together, they form a
matrix A which relates currents and voltages at ports 1 to those on 2:

iy_[(A B Va
(n)=(2 ) () 13
—_——

A

This way, the combined matrix A, of a series of N networks that are inserted
into the transmission line in series can be written as the product of the individual
matrices A,

N
A. = H A,. (2.19)

In many cases, this approach can be used to split up a complicated network into
trivial subnetworks, determine their fln matrices and calculate the combined
matrix A.. Many of the trivial matrices can also be found in literature such
as [Poz05]]. From the ABCD parameters, the corresponding Z matrix can be
calculated as

Z:1<A AD—BC’>.

ol D (2.20)
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2.3. Superconductivity

Superconductivity is the effect upon which most of this work is founded. In the
following, I will therefore briefly summarize the aspects relevant to the under-
standing of the presented results. For further information, the reader is referred
to textbooks such as [Sch97; [Tin04} Lik91]].

Superconductivity is a macroscopic quantum effect that occurs in certain mate-
rials below a critical temperature 7, and was first discovered in 1911 by Heike
Kamerlingh Onnes [KO11] through the sudden disappearance of the electrical
resistance of mercury. It took several decades until the first microscopic expla-
nation was published in 1957 by Bardeen, Cooper and Schrieffer [BCS57]]. It
states that in some materials, when the thermal energy kT is sufficiently low,
electrons can form a bound Cooper pair through a long range attraction medi-
ated by phonons . The Cooper pairs condense into a bosonic ground state that
can be described by a single macroscopic wave function

U(7) = /nge?), (2.21)

where ng is the Cooper pair density and 6(7) the phase of the wave function.

2.3.1. Flux Quantization in a Superconducting Loop

One direct consequence of the single-valuedness of Eq. (2.21)) is that the phase
change acquired along a closed path [ along a planar superconducting loop with
normal f encompassing a non-superconducting hole must still be a multiple of
2m:

7{ Vo dl = 2mn. (2.22)

From the canonic momentum of a Cooper pair p’and Eq. (2.21) one can derive
the current j in the superconductor in the presence of a magnetic field

ep _ens

j=== (hVG—Ze/_f), (2.23)

where m is the electron mass and A is the vector potential. As currents only
flow near the surface of a superconductor, Eq. (2.23) simplifies to VO = 2¢ A/h
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deep inside the superconductor. When inserted into Eq. (2.22)) we can see that
the magnetic flux ® through the enclosed area can only take quantized values:

2 - - 2 -
omn = EB Adl:he/(VxA)df (2.24)
2e S o 2e
- 2 Baf="o
n =5
h
® = n— =nd,. (2.25)
2e

Here, & = 2.068 x 10715 Vs is called the flux quantum.

2.3.2. The Josephson Junction

As was already stated in the introduction, a Josephson junction is a weak link be-
tween two superconductors. Since the experiments in this thesis only deal with
superconductor-isolator-superconductor (SIS) tunnel-junctions, we will restrict
the discussion to this special case in which the superconductors are separated by
a few nanometer thick insulating barrier through which Cooper pairs and normal
electrons can tunnel. The superconducting tunnel current and the voltage across
the junction are related to the phase difference between the wave-functions on
both sides of the junction and described by the Josephson relations Eq.

[L.2B).

The Josephson Inductance

A useful and widespread way of integrating Josephson junctions into circuit
models is to find their small-signal behavior. We can find the Taylor series
for Eq. (1.2a) around a phase value (g only retaining the terms up to the first
order:

1(t) = I.sin(pg) + I cos(po) (¢(t) — ¢o) - (2.26)
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2.3. Superconductivity

Figure 2.4.: a, The Josephson Tunnel junction (not to scale) is an isolating
barrier (dark gray) sandwiched between two superconducting electrodes (light
gray). Usually the junctions are only a few nanometers high while the elec-
trodes have a film thickness of several hundred nanometers. b, RCSJ model of
the Josephson junction. Parallel to the ideal junction are a capacitor and a resis-
tor accounting for the capacitance between the electrodes and the quasi-particle
tunnel current, respectively.

When rearranged for ¢(t) and inserted into Eq. (1.2b) we get

B Dp(t
V() = 272825) 2.27)

D 0
o1, cos(gg) Ot ®)

= Lileo) 210

This yields the Josephson inductance introduced in Eq. (I.3). Lj is called an
inductance because it relates the voltage over the junction to a time derivative
of the current through it. Analogous to the kinetic inductance of the super-
conductor, however, the energy associated with the Josephson inductance is not
stored in a magnetic field but as the kinetic energy of the tunneling Cooper pairs.
What makes this effect really unique is the range of tunability: By changing ¢q
between 0 and 7, one can tune L; from its initial value L;(0) = ®o/(271.)
to infinity and from negative infinity to —L;(0). The extreme values around
wo = m/2 are of course a consequence of the first-order cutoff performed in
Eq. (2.26). In reality, the concept of the Josephson inductance does not hold for
those values.
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The RCSJ model

In order to include Josephson junctions into a circuit model, we need to account
for more than just current and voltage associated with tunneling Cooper pairs.
An approach that is often used in this situation is the Resistively and Capaci-
tively Shunted Junction (RCSJ) model. In parallel to the element described by
the Josephson relations is a capacitor and a resistor. The capacitor accounts for
the capacitance between the two superconducting leads that usually overlap in
case of tunnel junctions and thus form a parallel plate capacitor. The resistance
accounts for the (lossy) contribution by tunneling quasi-particles. In general
its value cannot be determined so easily because it depends on the number of
available quasi-particles. Not only is this a temperature dependent quantity, it is
also related to the voltage across the junction as quasi-particles can be created
if the voltage is larger than the gap voltage Vyap, = 2A/e. One way to account
for this effect is by using a piecewise linear model

| Ry, V < Viap
R(V) = { N (2.28)

where R, is the sub-gap resistance, R, the normal resistance and usually Rz >>
R,. Even though this model is already highly simplified, it leads to a self-
consistent situation in the circuit modeP| due to which it cannot be solved in
frequency domain. For this reason, it is often assumed that R = R, which
neglects the voltage dependence altogether.

SAs R depends on V and vice versa.
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2.4. The SQUID meta-atom

The basic building block of the superconducting metamaterial discussed in this
work is the superconducting quantum interference device. SQUIDs are usually
classified by the number of junctions they contain. Historically, single junc-
tion versions are called rf-SQUIDs while the ones containing two junctions are
called dc-SQUIDs. Here will we focus on the former case, although most the
concepts we are going to use can also be applied to multi-junction SQUIDs.

Unless stated otherwise, I will use a set of parameters for the SQUID (found
column G2 in Tab. [3.2) wherever needed. They match those of the device that
was used in all the single SQUID experiments presented in this thesis.

2.4.1. The Single Junction SQUID

In the context of this work, it is necessary to discuss the dynamics of a single
junction SQUID (cf. Fig. [2.5p) that is subjected to an external magnetic flux
®. generated by a magnetic field perpendicular to its loop area.

a b

Junction

Figure 2.5.: a, Single junction (rf-)SQUID (based on the description in [Sch97]).
A superconducting loop (light gray) interrupted by a Josephson junction (black)
is threaded by a magnetic flux ®.,. Integration from point 1 to point 2 along
the dashed path yields an expression for the phase difference across the junction
(Eq. (2.29)) b, Equivalent circuit of an rf-SQUID. The loop is replaced by its
geometric inductance Lge, and the junction by its RCSJ representation.
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We can calculate the phase difference between both sides of the junction similar
to Eq. (2.24) by integrating along the ring (on the path 1 — 2 as shown in

Fig.[2.5p).

2
2% [+ -
=— [ Adl. 2.29
h/ (2.29)
1

Taking into account that the distance between points 1 and 2 is very small one
can approximate the expression by a closed loop integral and write

26 27r
Adl = 2.30
where & is the total flux in the loop, which is the difference between the external
flux and the flux generated by the screening current I, flowing in the loop:

q)ext =0+ LgeOIsc- (231)

The latter can be rewritten by applying Kirchoff’s current law to the RCSJ rep-
resentation of the junction seen in Fig.[2.3pb. It is the sum of the currents flowing
through the junction, the resistor and the capacitor. Together with Eq. (I.2b) we
get

.1
Le = CU+ U+ Lsin(p) (2.32)

B0, B
= o gD—l-ﬁCP—&-I csin(e).

When inserted into Eq. (2.31)), this yields

geo .

27 Lgeolc
R T g,

Pext = @ + LgeoCp + sin(y), (2.33)

where we substituted pexy = 27 Pext /P as the phase associated with the exter-
nal flux ®cy¢. Eq. (2.33) is more commonly written in a different form:

. 1 1.
Yext =@+ PL |Sinp + —o + — P, (2.34)
We wp

where f1, = 2w Lgeolo/Po is the SQUID parameter, w, = +/2m1./(C®o) is
the plasma frequency and w, = 27 RI./®, the characteristic frequency related
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1 05 0 05 1
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Figure 2.6.: Total flux in the loop vs. externally applied flux. The colors corre-
spond to different values of the SQUID parameter: S, = 0.5 (black), fr, = 1

(green), 51, = 2 (purple), B, = 5 (pink).

to the damping. Another common way of expressing the characteristic damping
is the McCumber parameter 5. = w. - RC.

The parameter (1, can also be written as the ratio between the geometric induc-
tance and the Josephson inductance at zero phase difference
_ Lgeo

Y
L;(0)

(2.35)

and serves an important role in the characterization of rf-SQUIDs: In the static
case, the functional dependence ¢ (pext) is defined through the static version of
Eq. 2.34)

Pext = ¢ + PLsing, (2.36)
which is plotted in Fig. For values of g, < 1, it is single-valued, for
larger values Sy, > 1, it starts to become multi-valued around eyt = +nm and

the SQUID is called hysteretic. For even larger values 5, 2 4.61 it becomes
multivalued in the whole eyt range.

For the following discussion of the transient dynamics of the SQUID, it is in-
structive to treat the phase evolution in terms of the motion of a virtual phase
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a 20/ ; — b 20F
15} ] 15}
g 10} 4 g 10L
S 5
-2 -1 0 1 2 -1 0 1 2
¢/ (2m) ¢/ (2m)

Figure 2.7.: SQUID Potential for a, ®eyy = 0 and b, Py = Po/2. As in the
previous figure, the colors correspond to different values of the SQUID param-
eter: O, = 0.5 (black), 51, = 1 (green), 81, = 2 (purple), 51, = 5 (pink).

particle with kinetic and potential energy.

1E;
Exn = s—3¢° (2.37)
2wj
_ ] (¢ — SDcxt)2
U = Ej|l—-cosp+—7r——]1, (2.38)
20

where E; = I.®o/(27) is the so called Josephson energy. Fig. shows a
plot of Eq. for two different values of the external flux. One can see
that the multi-valuedness of Eq. (2.36)) leads to the formation of stable wells in
the potential that can trap the phase particle. Although this effect may have its
application in a SQUID meta-material (as was suggested in [DCLO6]), we are
interested in effects that appear in non-hysteretic SQUIDs. Thus, from now on,
we will limit our discussion to the non-hysteretic case.

2.4.2. Limits of weak and strong driving

This subsections is dedicated to the analysis of the SQUID dynamics in the
limits of very weak and very strong driving. We will see that in both cases, the
dynamics reduce to that of a linear system with different properties. This is a
unique feature of the Josephson nonlinearity and can qualitatively be understood
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from Eq. (2.34): If the driving (and thus the variation in ¢) is very small, the
term ¢ + O, sin ¢ can be linearized around its static value. In the opposite case
(strong driving or large variation in ¢ > fr,), the By, sin ¢ term can be treated
as a small perturbation to ¢ or neglected altogether.

Response in the Limit of Weak Driving

In case of very small oscillations of the phase ¢ with amplitude ¢, around a
constant value g

® = o + pacoswt, (2.39)

Eq. (2.33)) can be treated in the same fashion that was used to derive the Joseph-
son inductance in Eq. (2.27). The dynamic part reduces to a tunable harmonic
oscillator

Pext 1 1 + BL cos o

Loy 1 Pucosgo 2.40
Lol T RCPT T ¥ (240

In this form, the prefactor of the last term is the square of the angular reso-
nance frequency w? and the resonance frequency, which is tunable by g, is (cf.

Fig.[2.8p)
Wr 1 1+ B, cos ¢g
= —=— | 241
h 2t 2w LgeoC ( )
= frov 1+ Brcosypy = 1/ +COS(p0,

where f.o = (2rv/LC) ™! is the resonance frequency of the RLC circuit with-
out the junction. The same result can be obtained by replacing the junction
in Fig. with the value of its Josephson inductance (Eq. (I.3))). Then the two
parallel inductors with values Ly, and L; can be treated as one with a combined

inductance using Eq. (2.35)):
L; Lgeo o Lgeo
L +Lgeo 1+BLCOS§00'

Le = Lgeol||Lj = (2.42)

The dependence of this quantity on external flux is shown in Fig. [2.8p.
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In this parallel RLC circuit, the resonance frequency is given by f, = (27v/L.C)~*
which leads to the same result as Eq. (2.41). From these equations we can de-
duce that the upper and lower limit of the resonance frequency are given by

fmax = frov/1+ B and fuin = frov/1 — BL, respectively. The quality of the

resonance is given by the simple relation

1
Q=25 — X |~ Jcosgy. (2.43)
wp wp V B

1 05 0 05 1 4 05 0 05 1
(I)ext/q)o (I)ext/(I)O

Figure 2.8.: Dependence of a, the resonance frequency and b, the total induc-
tance of a rf-SQUID on external magnetic flux. The colors correspond to differ-
ent values of the SQUID parameter: 81, = 0.2 (blue), 51, = 0.5 (black), fr, = 1
(green).

It should be stressed that, although the small signal approximation of the Joseph-
son nonlinearity breaks down as g approachesﬂ (n—0.5)m, n € Z, the predic-
tions for the rf-SQUID (as seen in Fig. 2.8) still work reasonably well as long
as fr, significantly less than 1. The reason for this is that for a large Josephson
inductance for this range of ¢g, the combined inductance L. is dominated by
the (much smaller) geometric inductance.

®Which is where the dc current in the junction approaches its critical value and the Josephson
inductance would diverge.
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Response in the Limit of Strong Driving

In case of very large variations of ¢ > [r,, the 1, sin ¢ term in Eq. can
be neglected as it oscillates in ¢ with an amplitude S, while the linear term
 increases with the driving strength. Consequently, the dynamic part of the
equation of motion

Pext 1 . 1

LeC ¢ T RCY T IC”

(2.44)

does not depend on ¢y any more. Instead, it reduces to that of the pure RLC
circuit that resonates at the LC resonance frequency fyo.

2.4.3. Intermediate Driving

In the last two subsections, I described the quasi-linear dynamics of the non-
hysteretic rf-SQUID in the limit of weak and strong driving. The transition
between those two regimes, however, cannot be dealt with so easily. It requires
a more rigorous treatment that will be introduced as part of the results of this
thesis in section Here, I will introduce the concept of the Duffing oscil-
lator as an example of how the nonlinearity can be accounted for. Although it
does not work particularly well for the rf-SQUID, it still exhibits some similar
phenomena and can be used to describe the onset of bistability.

From here on, we will make an assumption that may at first seem unintuitive for
a nonlinear system such as the SQUID. When a nonlinear oscillator is driven
with a frequency w, oscillations with integer multiples of the base frequency are
induced in addition to the fundamental frequency:

o(t) = i o™ cos (nwt + 5(“>>. (2.45)
n=1

For the following discussion, however, we will assume that the oscillations of
higher harmonics are much smaller than the fundamental one and thus

o(t) ~ o) cos (wt + 5(1)) = pg cos (wt + ). (2.46)

This assumption will be verified later in section 4.1
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The Duffing-Oscillator

The Duffing oscillator is an extension to the harmonic oscillator that includes
a 23 term in the equation of motion. This can be used to extend the low-
power case of the SQUID to higher powers under a harmonic drive @exy =
©ea cos (wt). To apply it, we have to replace the sinusoidal term in Eq.
by the first two terms of its series expansion

. 1 .
SIH<P:90_§‘P3+0(<P5)%90—

%w. (2.47)
This last approximation is only valid for small values of ¢ (such as ¢ < 7/4) but
most qualitative results can be reproduced for ¢ as large as /2. We will there-
fore assume an external flux as in Eq. (2.39) but without any time-independent
offset (o9 = 0). Replacing the sine term in Eq. by Eq. (2.47), we can ap-
ply the well-known formulas (e.g. as can be found in [LLI8|]) and calculate the
amplitude of the oscillations in the SQUID. They are given as the real solution
of a cubic equation in ¢2:

2
4 2 .2
Wp 2 wP wp Pea

—g | 45| =y
164/1 + 8" dwi | 4(BE+bu)

Here, é,, = w — wy is the difference between the frequency of the drive and the
low power resonance frequency and has to remain small for the model to yield
correct results.

oo | | 0w + (2.48)

Depending on the value of the driving amplitude, the oscillations in ¢ show
qualitative differences in their behavior as is shown in Fig.[2.9] For very low
values of the driving amplitude @5, the influence of the nonlinearity is small
and the SQUID behaves like a harmonic oscillator, as expected in the weak-
driving limit. (c.f. blue line in Fig.[2.9). As the amplitude of the drive increases,
the resonance curve starts to lean to the left (c.f. green line in Fig. [2.9) until ¢,
reaches a critical value

wi (141"

crit = 8 — = 2.49
ot = 8P| 5 = (249)
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Figure 2.9.: Relative amplitude of the oscillations /e, in the SQUID for dif-
ferent driving strength levels around the low power, zero bias resonance fre-
quency. The blue line corresponds to @e, = 27 - 1074, the green one to
Pea = 107 - 10~* and the red one to Pea = 4T - 1073. The dashed section,
although solving Eq. (2.48), is unstable.

above which more than one stable solution of Eq. exists for some fre-
quencies below the original resonance. In this case (c.f. red line in Fig. 2.9)
two of the three solutions of Eq. are stable (solid lines) while the third is
unstable (dashed line) and cannot be reached. Which of the possible solutions is
realized depends on the history and initial conditions. If, for example, we were
to start driving the system at a frequency below the bistable region and increase
the frequency, the amplitude of the oscillations would follow the red curve from
the left until it reaches the dotted section. From there, it would jump to the
upper branch and follow it further to the right. When sweeping the frequency
down, the system would stay in the upper branch for as long as possible, jump-
ing back to the lower branch at a different frequency. This hysteresis is one of
the measurable indicators of bistability.

It should be noted that the tip of the red curve in Fig. [2.9is already at a point
(g = m/2) for which the approximation of Eq. starts to fail. Thus, in or-
der to investigate the SQUID dynamics under even stronger driving, a different
description is necessary.
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2. Background

At this point, it should also be stressed that the bistability and hysteresis we
just discussed have nothing to do with that introduced earlier in SQUIDs with
Br, > 1 (cf. Fig.[2.7). Although even in the driven case, both can lead to a
hysteresis in the amplitude of the oscillations, the dynamic multi-stability also
works for smaller values of 51, (e.g. B ~ 0.45 was used in Fig. where
there is only one stable state in the stationary SQUID potential.
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3. Experimental Setup &
Procedures

“How hard can it be?”
Jeremy Clarkson, TV host on the show Top Gear
(Usually just as something is about to go terribly wrong.)

The path from an idea to the experimental results inevitably includes consider-
ations about the experimental setup, which are the subject of chapter 3} This
includes the samples, the hardware used in the measurements and the experi-
mental techniques. Many aspects of those things may seem obvious or even
trivial to anyone working in the same field.

Nonetheless, a very clear understanding of the experiment is necessary to relate
measured results to theoretical quantities.
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3.1. Samples

In this section, I will introduce the different rf-SQUID samples used throughout
this thesis. In total, there are three different generations of samples. Although
all of them are similar in many respects, some key changes have been imple-
mented between the generations which significantly influence the results.

In order to implement an rf-SQUID (Fig. 2.5p) using a Josephson tunnel junc-
tion in a niobium (Nb) thin film process, a number of things have to be con-
sidered. As the Josephson junction consists of an isolating barrier between two
superconducting layers (cf. Fig. [2.4p), one cannot just form a loop between
both sides of the junction. Instead, the loop is made from two parts in differ-
ent layers. An interconnecting part (also called a via) forms a superconducting
connection between the upper and the lower layer and closes the loop. Also, the
thickness of the films that make up the leads forming the loop is much smaller
than all the lateral dimensions of the structure. This circumstance facilitates the
trapping of Abrikosov vortices [Butl4] in the structure, which has to be avoided
where possible.

One of the major design considerations for this experiment was the SQUID’s
resonance frequency under weak driving (cf. Eq. (2.41))), which is defined
through the critical current of the junction I., the loop inductance L and the
capacitance C. As we need a non-hysteretic SQUID (8;, < 1), the loop in-
ductance has to be smaller than the Josephson inductance at zero flux (L;(0) =
®o/(271.), cf. Eq. (2.35)). This imposes an upper limit on L, as I, is limited
from below. This technological limitation has two reasons: First, the junction
area cannot be smaller than a minimum value A,,;, due to the resolution of the
photo-lithographic process which is typically of the order of 1 m?. Second,
the critical current density j. of the tunnel junction is limited by the thickness
of the tunnel barrier [KMMBO93]]. Due to the self-saturating nature of the oxidiza-
tion process, this thickness is limited to a maximum value for a given fabrication
procedure. The available critical current densities were 1 kA/cm? for the first
generation of samples and 0.1 kA/cm? for the second and third generation.

Using only the specific capacitance Cy of the junction (typically ~ 50fF/um?
[Mae+93])), the required frequency range (below 20 GHz) cannot be reached for
rf-SQUIDs in this process. Due to the fixed ratio between Cs and j. for a given
fabrication process, the resonance frequency of the SQUID can be written as a
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3.1. Samples

monotonically decreasing function of (r,:

o . 1 1
T Jmax = Wmax = = .
2m\ T C 2™\ Tra 2.

In the limit of a junction dominated SQUID [, — oo, this value equals the
junctions plasma frequency

. 27
1 =1/ = w,, 3.2
BLILnoo Wma, C.dy wp (3.2)

while for all other values wyax > wp. This implies that for the typical val-
ues of j. and Cs given above, the resonance frequency is larger than wy, /27 ~
100 GHz for any value of fy,. To circumvent this limitation, a shunt capaci-
tance Cgphunt Was added to the SQUID design parallel to the junction. It was
implemented in form of a parallel plate capacitor between the top and bottom
Nb layers with anodized Nb (such as Nb2Os) as dielectric. Due to its high rela-
tive permittivity (¢, ~ 32) and the small thickness of the layer (30-40 nm), this
material is ideally suited to build small area capacitors with high capacitance
values (= 2 pF in our case).

3.1

In addition to the SQUIDs, some of our samples also contain coplanar waveg-
uide structures which are created in the same process. For all samples, the
central conductor is made from Nb as it is used to bias the SQUIDs with mag-
netic field. The ground planes of the CPW, however, are only superconducting
in the first generation samples.

3.1.1. Fabrication

The first generation of samples was produced by the U.S. company Hypres Incﬂ
the second and third at the Kotel’nikov Institute of Radio Engineering and Elec-
tronics (IREE RAS) in Moscow, Russia. Both foundries use similar Nb pro-
cesses with a Nb/AlO,/Nb trilayer for the Josephson junctions.

First, the trilayer is deposited onto an oxidized Si wafer. Then, the junction
area is defined. In the Hypres process, the next step is the anodization of the

"http://www.hypres.com
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3. Experimental Setup & Procedures

shunt capacitor area before the definition of the base electrode. In the IREE
process, however, these steps are processed in reverse order. This makes it
necessary to leave galvanic bridges between all parts that have to be anodized at
this stage and connect them to a lead on the edge of the waver. They are removed
later in the process but their shadows are still visible under the microscope.
Next, a SiO5 layer separates the next Nb layer from the base electrode wherever
contact is undesirable. Finally, a Au layer is deposited at the end of the CPWs
to facilitate wire-bonding to the structure.

Top view

Capacitor — 5.

Junction

Crossection A-A

—

Si

Si substrate

Figure 3.1.: Sketch of the layer structure of the first generation SQUID featuring
a top view and a cut along the A-A direction. On top of the SiOy buffered Si
substrate is the trilayer consisting of M1a, the AlO, tunnel junction and M1b.
The shape of the latter two also define the junction area. The base electrode
is anodized (NbyOj5) where the shunt capacitance should be. Another SiOg
layer separates the trilayer from the top Nb layer M2 everywhere except for the
capacitor, the junction and via area.

A sketch of how the layers look in the finished first generation SQUID is shown
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3.1. Samples

in Fig.[3.1]

After these steps, the wafers are diced into chips that are 5 x 5mm? in the
Hypres process and 4 x 4 mm? in the IREE process. In the first generation, each
chip contained three CPW structures each in turn containing different types and

numbers of SQUIDs. In later generations, the number of CPWs per chip was
reduced to two.

3.1.2. Sample Generations

In this subsection, I will briefly summarize the key features of the SQUID gen-
erations which I will label G1 — G3. At the end of the section, all relevant
numbers will be summarized in a table.

I 50 pm l

Via

G1

Capacitor

Figure 3.2.: Comparison of the three SQUID generations. From left to right:
First generation Hypres SQUID, second generation IREE SQUID, third genera-
tion IREE SQUID. All three micro graphs were optimized to increase visibility.
The arrows indicate the positions of the vias and capacitors. The positions of
the Josephson junctions are highlighted by red dots.

The most distinctive feature about the first generation SQUID (G1) is that the
electrodes in M1a and M2 that form the loop are almost identical in size and
shape (cf. Fig.[3.2). As a result, the junction and via are on the opposite sides
of the loop. Both the via area and the width of the leads were much larger than
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in later samples. I will show results from two samples, the first one is a CPW
containing one SQUID (G1-1), the second one a CPW containing 60 SQUIDs
(G1-60).

The second generation SQUID (G2) has much narrower leads than its predeces-
sor and is made almost completely from the base trilayer base electrode. M2
is only used as the upper plate of the capacitor and connects to the via located
directly beside it. This design was also chosen because the new loop structure
has a higher loop inductanceE] and thus the SQUID a lower band of resonance
frequencies. Again, there are two samples. The first with a CPW containing
two SQUIDs (G2-2), the second one containing 54 SQUIDs (G2-54). At some
point, it became necessary to measure a CPW with only a single SQUID, so
one of the two in G2-2 was removed using a scalpel. For measurements on the
sample after this operation I will refer to the sample as G2-1. Fig. features
microscope pictures of a chip containing both G2 samples. It shows the chip
that is wire-bonded to a PCB (cf. Fig.[3.7h) for a measurement of the upper of
the two samples .

Apart from the lower resonance frequencies, one design consideration for the
second generation of SQUIDs was to suppress the trapping of Abrikosov vor-
tices in the structures. Since these changes proved to be successful (as I will
show later in section 4.2.2)), the third generation (G3) SQUIDs are very sim-
ilar to their predecessors. They only differ in the exact dimensions of the
capacitor and the loop. Although there are also samples with 1D arrays of
SQUIDs from this generation, the only G3 samples used in this thesis are two-
dimensional arrays. There are two types of arrays, both of them containing
21 x 21 = 441 G3 meta-atoms. Both are designed such that the coupling be-
tween neighboring SQUIDs in z- and y-direction is approximately identical. In
one of them, the SQUIDs are densely packed (G3-D, cf. Fig.[3.4p). The cou-
pling between nearest neighbors is ky, = —2.9 - 1072 and kg, = —6.87 - 1073
to the diagonal neighbors. In the other sample, the spacing is larger (G3-L, cf.
Fig. ). Here, the coupling between nearest neighbors is ky, = —6.4 - 1073
and kg, = —1.87 - 1073 to the diagonal neighbors.

Increasing the loop inductance was possible because the IREE process allows lower critical
current values. This shifts the limit imposed by the requirement to keep (51, below one.
3Calculated for the effective junction (i.e. including the shunt capacitance).
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&

-5

_ et

B 5'<l

Figure 3.3.: Complete 4 x 4 mm? chip containing samples G2-54 (upper CPW)
and G2-2 (lower CPW). The wire bonds are placed for measurements of sample
G2-54. Below are two higher resolution details of the CPW gaps containing the
SQUIDs.
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Figure 3.4.: Optical micrographs of third generation SQUID samples (2D ar-
rays). a, Densely packed, strongly coupled SQUIDs (G3-D). b, Loosely packed,
weakly coupled SQUIDs (G3-L).The horizontal bars between the SQUIDs are
visible leftovers from the M1a bridges used for anodization.

Description Gl G2 G3
SQUID width 45pum | 4bpm | 49 pm
SQUID height 52 pum | 49 pm 71 pm

Loop inductance 63.5pH | 83pH | 131pH
Shunt capacitance 1.7pF | 2.03pF | 2.05pF
(RCSJ-)Resistance | 0.5 k(2 1kQ 1k

Critical current 4.5puA | 1.79 A | 1.86 pA

S QL= e

Table 3.1.: Physical parameters of the three SQUID generations. The width
and height values correspond to the outer dimensions of the structure as seen in
Fig. The R values are just rough approximations based on the the normal
state resistance of the junction R,,.

The physical parameter values for the different SQUID generations are given in
Tab. [3.1] the resulting SQUID values in Tab. [3.2]
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Description Gl G2 G3
0OL SQUID parameter 0.87 0.45 0.74
Be McCumber parameter’| 5.81-10% | 11.03-10% | 11.57 - 103
we/(2m) | Characteristic frequency [GHz] 1086.96 864.73 898.55
wp/(27) | Plasma frequency’ [GHz] 14.27 8.23 8.35
fro LC resonance frequency [GHz] 15.32 12.26 9.71
Smax Max. resonance frequency [GHz] 20.94 14.76 12.81
Jmin Min. resonance frequency [GHz] 5.52 9.09 4.97

Table 3.2.: Characteristics of the three SQUID generations calculated from the

parameters given in Tab. [3.1}
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3.2. Microwave setup

In order to measure the transmission through the SQUID-loaded CPWs that
were introduced in the last subsection, they have to be integrated into a suitable
setup.

Starting from a chip such as the one shown in Fig.[3.3] the first task is to organize
the connection to coaxial cables. This is necessary because most components in
the frequency range of interest use coaxial cables with standardized connectors
as waveguides.

For this purpose, the chip is inserted into a matching, milled out space in a
circular printed circuit board (cf. Fig.[3.5). The PCB itself contains coplanar
waveguides which are wire-bonded to the chip on one side and have a coplanar
to coaxial (SMP) connector on the other end.

Bond wire CPW

Figure 3.5.: Sample holder PCB containing a 4 x 4 mm? chip. The chip is wire-
bonded to the PCB (shown in more detail in the inset). The two unused coplanar
waveguides on the PCB that run perpendicular to the others are connected to
ground. On the far ends of the waveguides on the PCB, surface mounted (SMP)
connectors form the transition from coplanar to coaxial waveguides.

The substrate of the PCB is a ceramicEl with a dielectric constant close to that of
silicon. This way, the CPWs on the PCB can be made almost as small as those
on the chip which facilitates matching and bonding. Additionally, a low thermal

*Rogers TMM10i. http://www.rogerscorp.com

46



3.2. Microwave setup

coefficient of the dielectric constant makes this type of material better suitable
for low-temperature applications than most other dielectrics.

Figure 3.6.: Picture of the sample holder box. a, The bottom part holds the PCB.
b, The top part has holes through which coaxial cables connect to the connectors
on the PCB. Only two of the four holes are open. The two wires, visible in the
upper right, connect to a coil wound around the outside of the top part that can
be used to apply a magnetic field to the sample.

The PCB is then mounted on the bottom part of a sample holder box shown
in Fig. 377p. When both parts of the sample holder box are connected, they
form a closed cavity which is only accessible from the outside through the SMP
connectors. The top part of the sample holder also has a recess around its cir-
cumference (cf. Fig. which houses a coil, made from 500 windings of
NbTi. It is used to apply a magnetic field to the sample. When both parts of the
sample holder are connected together, the chip is positioned in the center of the
coil where the field is most homogeneous.

Design drawings of the PCB without chip and connectors as well as the sample
holder box are depicted in Fig.[3.7]

The sample holder is connected to two microwave cables and mounted at the
very bottom of a cryogenic dipstick in liquid *He inside a magnetic shield. The
shield is made from Cryoperm, a type of p-metal that is optimized for cryogenic
applications. Its purpose is to shield the sample as well as possible from any
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Figure 3.7.: Design drawings of a, PCB and b, Sample holder box. The latter
consists of two parts. A bottom plate, onto which the PCB is mounted, and a top
part, which holds the microwave cables. When connected together, the interior
is a closed cavity.

static magnetic fields, such as the earth’s magnetic field and the fields emanating
from ferromagnetic components in the setup.

The rest of the low temperature setup is depicted in Fig. The microwave
signal enters through a coaxial cable from the room-temperature electronics,
passes a 30 dB attenuator before going into the rf port of a bias-T. It then passes
through the sample and into the dc+rf port of a second bias-T, through a 3dB
attenuator and then into a cryogenic high electron mobility transistor (HEMT)
amplifier before going back to room-temperature.

The purpose of the cold 30 dB attenuator is to reduce the thermal noise coming
to the sample from the microwave source. The second (3dB) attenuator is used
to reduce standing waves due to reflections at the input of the amplifier. The
two bias-Ts serve a dual purpose. Their primary function is the possibility to
superimpose the microwave in the sample with a dc current that runs through
the central conductor of the CPW on the chip. This way, it creates a dc mag-
netic field that is anti-symmetric in the two CPW gaps with respect to the central
conductor. Using this together with the field created by the coil, which is sym-
metric, means that the SQUIDs in one gap can be biased independently from
the ones in the other gap. The second purpose of the bias-Ts is that they act as
a high-pass filter on the microwave line, blocking low-frequency noise below
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3 /’“\\ Amplifier
30dB attenuator — 3dB attenuator
Bias-T 1
Bias-T 2
Shield mounting —
@ o
NbTi Coil ol
> 1
Sample holder box +——> #—— Cryoperm shield

Figure 3.8.: Low temperature part of the experimental setup. The red arrows
show the direction in which the microwave propagates through the devices. The
Cryoperm shield shown on the right is fixed by three screws at the position
labeled “Shield mounting”.

their cutoff frequency (=~ 40 kHz).

The room temperature part of the setup consists of a VNA that measures the
transmitted microwave signal and two current sources that supply the bias-T's

49



3. Experimental Setup & Procedures

and the coil. A sketch of the complete setup is shown in Fig.[3.9]

Many of the components introduced in this subsection were developed and fab-
ricated in-house. The sample holder PCB is a modification of an older design
and was made in the electronic workshop using a LPKFEI ProtoMat S100 PCB
milling machine. The sample holder was developed as part of a bachelor thesis
[Wol12] and is also an improved version of an older design. It was manufac-
tured at the local mechanical workshop, as was the dip-stick on which it is
mounted.

A more detailed account of the used devices and instruments and their specifi-
cations is given in appendix

Typical Measurements

Typical measurements for this type of setup are multi-dimensional sweeps con-
trolled by a Python script running on the measurement PC. The innermost sweep
parameter (i.e. the one that is swept the fastest) is usually either the frequency
or the power of the drive. Sweeping one of these two parameters is left to
the network analyzer while the PC collects the resulting one-dimensional traces
from the VNA and changes the other parameters as required. This makes it
possible to use the calibration routines of the VNA, which is done by replac-
ing the sample-holder box by a through—pieceE] and using the VNA’s internal
through-calibration. The VNA stores the information of the transmitted signal
without the sample (i.e. the calibration curve) and uses it to normalize all subse-
quently measured data. This simplifies the analysis of the data, as now, only the
sample holder box and PCB have to be accounted for when modeling the ex-
pected transmission through the SQUID-loaded waveguides. The calculations
presented in section 3.4 make use of this assumption.

Shttp://www.Ipkf.de
®In essence, the two cables that would normally connect to the sample holder box are instead
connected directly to each other.
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PC VNA
Running Python
Measurement Scripts 1 2
DAC ’
1 2 i 3008 [ ] 3dB

‘/1 T Icoil E — —

y
|

Figure 3.9.: Sketch of the measurement setup. The PC manages the experiment
by controlling the VNA and a digital to analog converter (DAC). Two current
sources, that are controlled by the DAC, supply the currents for the coil I ; and
the bias-Ts Ij;. The blue dashed line indicates the cryogenic part of the setup.
It consists of an input attenuator, the two bias-Ts (indicated by the black dashed
line), the sample, the coil, an output attenuator and a HEMT amplifier as also
shown in Fig. [3.8] Note that the orientation of the coil is not correctly shown
here. In reality, the generated field is perpendicular to the surface of the sample.
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3.3. Pulsed setup

For an experiment that will be introduced further on in this thesis (see Sec. {.4)),
it is required to apply pulses to the sample in addition to the microwave drive.
As the goal of this measurement is to compare the transmission signal before
and after applying the pulses, the VNA is set to continuous wave (CW) mode. In
this setting, it emits a microwave of a single frequency and records S-parameters
as a function of time rather than drive frequency or power.

Fig. shows the modified setup for this experiment. Instead of connect-
ing the VNA directly to the input of the cryostat, it is connected to the local
oscillator (LO) port of a microwave mixer at room temperature. The intermedi-
ate frequency (IF) port of the device is connected to a pulse/pattern generator
(PPG). The RF port of the mixer goes to the input port of the cryostat.

Microwave mixers are commonly used to multiply two microwave signals for
tasks such as frequency up- or down-conversion or phase detection. When used
the way depicted in Fig.[3.10] they can also be used to modulate the amplitude of
the signal applied to the LO port. This way, short bursts of microwave power can
be created. Later I will refer to these bursts as rectangular envelope microwave
(REM) pulses.

In this arrangement, the power emitted by the VNA, which drives the diode
inside the mixer, has to be at a constant level of about 10 dBm. Due to the
limited isolation of the mixer, the minumum power at the rf port of the mixer is
about —25 dBm. Whenever lower power levels were required, more attenuators
were installed in addition to the one shown in Fig.

The pattern generator is programmed to output a sequence of “low” and “high”
voltage levels (shown schematically in Fig. [3.11p), which are applied to the
mixer as is the output of the VNA (cf. Fig.[3.1Th). The resulting waveform
(Fig. 3.11k) is the product of the two inputs. Hence, the low voltage from the
PPG leads to a low microwave power, while a high voltage leads to a high power
being applied to the sample. In a typical measurement, the computer sends a
trigger signal to the PPG, which in turn triggers the VNA to start a measurement
and starts to output a low voltage. After a certain time (usually about 0.1 s), the
PPG sets the voltage level to high for a brief duration (2 — 200 ns). Finally,
the voltage is set back to the initial low level for the rest of the measurement
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Data
Trigger Trigger
Yy | y | Y
PC PPG VNA
Running Python (cw mode)
Measurement Scripts Out 1 )

DAC
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I =

Figure 3.10.: Sketch of the measurement setup for pulsed measurements. The
low temperature part is almost identical to the original design. On the input side
of the room temperature part, the VNA is set to continuous wave mode and its
output is mixed with that of a pulse/pattern generator (PPG) before being fed

to the sample. The colors of the arrows correspond to the colors in Fig. [3.11]
which shows the signals coming from the different devices.

53



3. Experimental Setup & Procedures

(usually about 0.9s). The VNA records the transmitted microwave signal as a
function of time throughout this sequence. The measurement is usually repeated
a number of times to get some statistical data.

a

Voltage

Voltage

AN AR

Time

Voltage

Figure 3.11.: Sketch of the waveforms coming from: a, The VNA. b, The pulse/-
pattern generator. ¢, The output of the mixer is a constant microwave signal with
a rectangular envelope microwave pulse. This last signal is what is applied to
the sample. The colors correspond to the color of the arrows in Fig. which
show the respective propagation direction of the signals.
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3.4. Modeling

In order to be able to compare the different results obtained using the methods
outlined in this chapter, a connection between theoretically accessible quantities
and measurable S-parameters has to be formed. In the following, I will therefore
introduce a method that can be used to calculate the scattering parameters of the
innermost part of the setup as a function of the SQUID’s flux susceptibility.
This fundamental quantity can be obtained from the steady state solution of the
SQUID’s equation of motion (cf. Eq. (2.34)).

L
r,e L
)M Mo eff Lit]
Ly
[ — [ —
o & O o & O

Figure 3.12.: Equivalent circuit of a CPW unit cell (represented as a transmis-
sion line) containing a SQUID. a, The SQUID is coupled to the CPW by a
mutual inductance M. b, The same scenario can be represented as a pure TL
section where the value of the inductance is modified by the presence of the

SQUID (cf. Eq. @).

In case of a single SQUID embedded in one of the gaps of a coplanar waveg-
uide, we first have to find an electric circuit equivalent of the CPW-SQUID unit
cell. Fig.[3.12h shows such a unit cell. The CPW is represented as a lossless
transmission line section of length [ with characteristic inductance L’ and ca-
pacitance C’ per unit length. The inductance of the SQUID loop L is coupled
to the CPW inductance Ly; = L'l via a mutual inductance

M = k+/L Ly, (3.3)

where k is called the coupling coefficient. The impedance of the TL induc-
tance is modified by the presence of the SQUID because in addition to the volt-
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age due to the current in the transmission line Ij, another voltage is induced
by the screening currents flowing in the SQUID loop Isq. Making the usual
harmonic assumption in the complex notation we can write the current in the
transmission line and the total flux through the SQUID as I;; = Ijexp (iwt)
and ® = &, exp (iwt + 0), respectively. Taking into account that the current
in the TL causes the external driving flux of the SQUID via their mutual in-
ductance ®oyy = M - I}; and that screening current, total flux and external flux
are connected by Eq. (2.4), we can write the voltage drop across the inductance
as
dly dlsq dly %d(@ — Deyt)

Vg = La—gm+ M52 = Lapm+ =

o, . ,
= iwly (1 + k2 <e“5 — 1)) Toe™. (3.4)

(bea
The modified impedance of the inductance is then

‘/lsq . 2
Deg = — = wwly (1 + k 3.5
sa = 7 iwLy (1+k°xa), (3.5)
ZLv“ Hr eff

where Z7, 1) is the impedance of the transmission line inductance without the
SQUID and x4 the flux susceptibility that was introduced earlier. This complex
quantity contains the amplitude ratio and phase difference between the flux os-
cillations in the SQUID and the drive. From this last equation it can be seen that
the influence of the SQUID on the inductance can be considered as a change of
the effective, relative permeability 1, o seen by the TL inductance. This is also

indicated in Fig.[3.12b.

According to Ref. [Poz05]], the ABCD matrix (introduced in Sec. [2.2.4)) of the
unit cell is then

A 1- Mr,eﬁszthtl ,U/r,eﬁiWLtl
Agt) = < iwCy 1 (3.6)
At this point we can calculate the Z matrix (Eq. (2.20)) and from that the S
matrix (Eq. (2.16)) of the unit cell. Due to the nature of the setup, however, it
is impossible to calibrate the measurements just before and after the SQUID-
loaded unit cell. The closest we can move the calibration planes to the sample

56



3.4. Modeling

are the SMP connectors on the PCB (cf. Fig. @ For this reason, we have to
include everything in between those two connectors into the model if we want
to be able to compare it to actual measurements. Starting from one connector,
this means a section of CPW on the PCB of length /; with matched impedance
Zo = 502 and propagation constant 31, then the bond connection between
PCB and chip, then another section of CPW on the chip (Iength l» ~ 2mm,
Zo = 502 and propagation constant 32) on each side of the unit cell. Using the
ABCD matrices fh, flbond and flg for the first CPW section, the bond wires
and the second CPW section, respectively, the complete ABCD matrix for the
network between the connectors is given by

Ac = 1211 : Abond : AZ : Astl : AZ ) Abond : Al- (37)

Here, the CPW matrices are represented by pieces of lossless transmission line

A _ COS(ﬁlll) iZO Sin(ﬂlll)
L= iSin(ﬂlll)/Zo COS(Blll) ’

1212 _ < COS(ﬂng) iZoSin(Bglz) )7 (3.8b)

(3.8a)

isin(BQZQ)/ZO COS(BQZQ)

while the bond wires are modeled as an inductive in-line scatterer with induc-

tance Lpond
~ 1 wl
Apond = ( 0 fond ) : (3.9)

Finally, using Eq. (2.20) and Eq. (2.16) we can calculate the complete scattering
matrix from A, (Eq. (3.7)) which can be compared to measurement result that
have been calibrated at the SMP connectors on the PCB.

In reality, of course, all of the components that have been assumed as lossless
are lossy as well. This will lead to a difference between measurements and
calculation that, however, is sufficiently small to not obscure the qualitative
results.

For the sake of completeness, it should be mentioned that the presented method
can also be extended to the case of a CPW loaded with many SQUIDs (such as
the one in Fig. [3.3)) although this will not be needed in the following. For N
unit cells, one has to cascade the ABCD matrices le = flé\t[l and reduce the
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distance /o by half the length of the newly introduced array. This scenario has
been studied in detail in Ref. [But14]. If 