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Nonlinear time reversal of classical waves: Experiment and model
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We consider time reversal of electromagnetic waves in a closed, wave-chaotic system containing a discrete,
passive, harmonic-generating nonlinearity. An experimental system is constructed as a time-reversal mirror, in
which excitations generated by the nonlinearity are gathered, time-reversed, transmitted, and directed exclusively
to the location of the nonlinearity. Here we show that such nonlinear objects can be purely passive (as opposed
to the active nonlinearities used in previous work), and we develop a higher data rate exclusive communication
system based on nonlinear time reversal. A model of the experimental system is developed, using a star-graph
network of transmission lines, with one of the lines terminated by a model diode. The model simulates time
reversal of linear and nonlinear signals, demonstrates features seen in the experimental system, and supports our
interpretation of the experimental results.
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I. INTRODUCTION

The time-reversal and reciprocal properties of the lossless
linear wave equation can be utilized to achieve useful effects
even in wave-chaotic systems [1] typically endowed with com-
plex boundaries and inhomogeneities [2–9]. Wave equations
without dissipation are invariant under time reversal; given
any time-forward solution considered as a superposition of
traveling waves, there exists a corresponding time-reversed
solution in which the individual superposed traveling waves
propagate backwards retracing the trajectories of the time-
forward solution. In principle, this allows the construction of a
time-reversal mirror. First, imagine an ideal situation in which
one transmits a wave form of finite duration from a localized
source in the presence of perfectly reflecting objects and
then receives the resulting reverberating wave forms (referred
to as the sona) on an array of ideal receivers completely
enclosing the region where the source and reflecting objects
are located. After the reverberations die out, one then transmits
(in the opposite direction) the time-reversed sona signals from
the array of receivers. This newly transmitted set of signals
essentially undoes the time-forward propagation, producing
waves which converge on the original localized source,
reconstructing a time-reversed version of the original signal at
the localized source. Although real situations deviate from the
above described ideal, time reversal in this manner has been
effectively realized in acoustic [2–11] and electromagnetic
waves [6,8,12,13], and applications such as lithotripsy [2,4],
underwater communication [2,14,15], sensing small perturba-
tions [10,11], and achieving subwavelength imaging [6–8,16]
have been developed.

Ideally, for a perfect time-reversal mirror, a large number
of receivers are required to collect the sona signals, and the
receivers need to cover a surface completely surrounding the
source and any reflecting objects (which reflect without loss).
A significant simplification is to enclose the system in a closed,
ray-chaotic enviroment with highly reflecting boundaries. For
wavelengths smaller than the enclosure size, propagating
waves will (over a sufficiently long duration) reach every
point in the environment, allowing a single wave-absorbing
receiver to record a single time-reversible sona signal over a
long duration [9,10]. Somewhat surprisingly, it has been found

that, in the presence of boundary reflection loss, a high-quality
version of the basic time-reversal reconstruction still occurs
at the source, and reception of only a small fraction of the
transmitted energy is sufficient for reconstruction of the initial
wave form at the source. Nevertheless, such a time-reversal
mirror still requires an active source to generate the sona
signal. In some cases, it would be better if this step could
be eliminated, further simplifying the time-reversal mirror.

Recent studies have investigated the addition of discrete
elements with complex nonlinear dynamics to otherwise linear
wave-chaotic systems [17,18]. When a discrete nonlinear
element is added to the system, excitations at new distinct
frequencies are generated from the interaction of the initial
wave form with the element. This appears as a radiated
signal originating at the location of the nonlinear element
(which in principle may be unknown). The new wave form
propagates through a linear medium and, when time-reversed
and retransmitted, will reconstruct the excitations generated at
the nonlinear element. (This form of nonlinear time reversal
differs from wave propagation through a distributed nonlinear
medium, in which the time-reversal invariance breaks when
shock waves form [19].) Time reversal in systems with
localized nonlinearities has been demonstrated in several
systems: acoustic waves through materials with defects [20], as
a means of nondestructive evaluation [21], phase conjugation
of light harmonically generated from a nanoparticle [22], and
phase conjugation of acoustically modulated light using a
focused utrasonic signal as a “guide star” for the time-reversed
focusing [23].

In our previous work, nonlinear time reversal was per-
formed using microwaves incident upon a harmonically driven
diode, generating intermodulation products [18]. A drawback
of the technique is the need to use an active nonlinearity (a
driven diode to create intermodulation products) instead of
a passive element. Also missing is a quantitative model to
describe and understand the nonlinear time-reversal physics.
Furthermore, the technique was applied to develop a method
of exclusive communication, which appears to be rate limited
by the length of the sonas necessary to transmit information.
Here we examine a wave chaotic system with a discrete,
passive nonlinear element as a nonlinear time-reversal mirror,
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FIG. 1. (Color online) (a) The experimental setup in the time-forward step, containing a passive nonlinear circuit, showing the Gaussian
pulse injected into the linear port and the resulting sona measured at the receiving port. (b) The experimental setup in the time-reversed step,
showing the time-reversed nonlinear sona injected into the receiving port and reconstructing as a time-reversed excitation at the nonlinear port.

and we construct a model system using a star-graph network
of transmission lines to simulate propagation through this
nonlinear wave-chaotic system. We also demonstrate a method
of transmitting information encoded in the nonlinear sona, ex-
plore the extent to which the recorded length of the sona limits
the rate of information transfer, and demonstrate the ability to
reconstruct overlapped sonas into distinct pulses, allowing for
compressing many bits of information into a given sona length.

II. EXPERIMENT

We have realized a time-reversal mirror using electro-
magnetic waves in a closed complex (ray-chaotic) scattering
environment. Figure 1(a) illustrates the setup showing a

Gaussian pulse injected at the linear port and the sona
measured at the receiving port. The enclosure is a 1.06 m3 alu-
minum box (1.26 m × 1.26 m × 0.67 m) with irregular sur-
faces and a conducting scattering paddle, and has three ports,
consisting of loop antennas, for the introduction and extraction
of microwave signals. A passive nonlinear element was
introduced by connecting one port to a frequency multiplier
circuit. The circuit consists of a Wilkinson divider (HP model
87304C), with both outputs connected to the ports of a passive
diode-based 2× frequency multiplier (Mini-Circuits model
ZX90-2-50-S + ) to form a closed circulating nonlinear circuit.
The circuit is configured to mimic the response of a memory-
less, passive, nonlinear element. In the time-forward portion
of the experiment, an initial driving signal, consisting of a
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FIG. 2. (Color online) (a) Fourier transform of the sona measured at the receiving port, indicating the linear sona at f0 and nonlinear sona
at 2f0. (b) Reconstruction of the linear sona at the linear port. (c) There is no appreciable reconstruction of the nonlinear sona at the linear port
(inset shows the original incident pulse, for comparison). (d) There is no appreciable reconstruction of the linear sona at the nonlinear port.
(e) Reconstruction of the nonlinear sona at the nonlinear port.

Gaussian-shaped pulse at a carrier frequency f0 = 3.8 GHz,
is transmitted into the system from the linear port [Fig. 1(a)
inset]. The excitation propagates throughout the system,
including to the nonlinear element (60 cm from the linear
port), where the portion of the Gaussian pulses incident
upon this circuit is partially up-converted to twice the
pulse frequency (2 × f0 = 7.6 GHz) before reentering the
enclosure with a time delay of less than 1 ns. The combined
sona signal [time domain shown in Fig. 1(a), frequency
domain in Fig. 2(a)] is received at the receiving port (125

cm from the linear port, 150 cm from the nonlinear element)
and filtered in software into a “linear sona” at the pulse carrier
frequency, and a “nonlinear sona” at the second harmonic
frequency. (When the frequency multiplier circuit is removed
from the system, the second harmonic disappears from the
received sona signal, as expected, leaving only the “linear
sona.”)

In the time-reversed portion of the experiment [Fig. 1(b)],
each sona is time-reversed and retransmitted at the power
level of the original pulse from the receiving port. The
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resulting signals are then measured at the linear port and
at the nonlinear port (the nonlinear circuit is removed in
this step). Figures 2(b)–2(e) shows example reconstructions
measured using this setup. For the linear sona, a reconstructed
Gaussian pulse appears only at the linear port [Fig. 2(b)];
similarly, for the nonlinear sona, a reconstructed pulse appears
only at the nonlinear port [Fig. 2(e)]. This demonstrates the
exclusive nature of information transfer between the receiving
port and the linear or nonlinear port [18]. As explained
previously [18], and examined further below, we interpret the
reconstructed wave form in Fig. 2(e) as that arising from the
first large-amplitude pulse that arrived at the diode during
the time-forward phase of the experiment [Fig. 1(a)].

The exclusive nature of the reconstruction of the nonlinear
sona allows the construction of a communication channel
to the nonlinear port [18]. Figure 3 demonstrates such a
communication channel in the experimental system using the
passive harmonic-generating nonlinearity. The communica-
tion channel works by using a signal formed by shifting and su-
perposing a series of one-input-pulse sonas. Figures 3(a)–3(c)
demonstrates reconstructions of the overlapped sonas. When
this superposition of sonas is time reversed and reinjected, it
results in reconstructing a sequence of pulses at the intended
receiver. To maximize the data capacity it is desired to employ
shifts that are relatively short, yet long enough that the
reconstruction results in distinguishable pulses. In Fig. 3(a)
a reconstruction from a single linear sona is shown for
illustration. In Fig. 3(b) two sonas are overlapped, with a time
delay of 50 ns (shifted one pulse duration) [24]. The two pulses
are clearly resolved in the reconstruction, though they are
of lower amplitude than in the single-pulse reconstruction in
Fig. 3(a); the combined sonas are transmitted at the same power
as the single sona, which results in the energy division between
the reconstructions. In Fig. 3(c) 16 sonas are combined,
each new sona shifted 50 ns from the previous one. The
reconstructions are still distinguishable above the sidelobes,
which are somewhat enhanced.

To send binary coded information as a string of 1’s and 0’s,
we use a transmitted time-reversed one-pulse sona to represent
a 1 and a phase-scrambled version of the one-pulse sona to
represent a 0 [18]. The use of a phase-scrambled sona for a 0
(rather than no transmission at all for a 0) is advantageous in
that an eavesdropper, at another location, would not be able to
distinguish 0’s from 1’s. Figures 3(d) and 3(e) show images
transmitted using reconstructions of concatenated sonas; each
pixel color is encoded as a two-bit word (black = “00,” blue =
“01,” red = “10,” green = “11”) in a sona overlapped by 50% (a
time delay of 5 μs). The “LI” image in (d) was encoded using
the filtered linear sona and transmitted from the receiving port.
The reconstructions at the linear port were decoded into pixels
of the appropriate color, generating a facsimile of the original
image. At the nonlinear port, no reconstruction arrived, and
the decoded wave form (a series of “00” words) decoded as a
black image. The “NL” image shown in Fig. 3(e) was encoded
using the filtered nonlinear sona and transmitted in the same
manner from the receiving port; here the reconstructions arrive
at the nonlinear port, and decode as the facsimile image. At
the linear port, the lack of reconstructions result in a mostly
black image.

III. A MODEL FOR NONLINEAR TIME REVERSAL

A. Linear model

Our model of a cavity with two ports is constructed as a
network of transmission lines of varying lengths, connected in
a star-graph topology [13,25,26], as shown in Fig. 4. The use
of multiply-connected transmission lines to simulate complex
wave-chaotic scattering systems is well established [26]. Wave
propagation on a network of interconnected transmission
lines becomes quite complex, even for a simple graph.
The computational simplicity of these quasi-one-dimensional
models adds to their appeal. Each pair of lines in Fig. 4
depicts a linear homogeneous transmission line, representing
a portion of a channel of wave propagation in the cavity. Each
line μ is assigned a length Lμ (and a corresponding time
for a wave packet to transit �tμ), a characteristic admittance
Yc,μ, attenuation (αμ), and phase evolution (βμ ≡ ω/vμ) per
unit length [with combined propagation constant γμ(ω) =
αμ + iβμ], and a complex reflectivity �μ for the termination of
the unconnected end. Lines 1 and 2 are designated to represent
the two ports into the cavity by selecting �1 = �2 = 0; waves
exiting the graph through the two ports are not reflected.
The other lines μ > 2, through the multiple reflections and
scattering at the common node, simulate the presence of
multiple ray paths connecting ports 1 and 2. In what follows,
we shall henceforth consider the case �μ = 1 (open circuit)
for μ > 2. (In previous models, demonstrated in Refs. [13,25],
only a single port is used to transmit and receive wave forms.)
A wave form is “injected” into the system at one port, and the
resulting wave form is “received” and recorded at the other
port.

The linear transmission line networks are analytically
solvable in both the frequency domain and in the time domain.
In the frequency domain, a sona is generated by applying the
scattering matrix to an initial Gaussian pulse. For a two-port
star network of transmission lines, the scattering parameters
can be expressed in terms of the input admittance [Y (ω)] of the
(nonport) lines and the characteristic impedances of the ports
(Zc,μ ≡ 1/Yc,μ) by

Y (ω) =
n∑

μ=3

Yc,μ

(
1 − �μe−2γμLμ

1 + �μe−2γμLμ

)
, (1a)

S11(ω) = Zc,2 − Zc,1 − Y (ω)Zc,1Zc,2

Zc,1 + Zc,2 + Y (ω)Zc,1Zc,2
e−2γ1L1 , (1b)

S12(ω) = 2
√

Zc,1Zc,2

Zc,1 + Zc,2 + Y (ω)Zc,1Zc,2
e−γ1L1−γ2L2 , (1c)

S21(ω) = S12(ω), (1d)

S22(ω) = Zc,1 − Zc,2 − Y (ω)Zc,1Zc,2

Zc,1 + Zc,2 + Y (ω)Zc,1Zc,2
e−2γ2L2 . (1e)

where n is the total number of lines. We choose to make
port 1 perfectly matched (i.e., no prompt reflection for signals
injected into this port) by requiring

Yc,1 =
n∑

μ=2

Yc,μ = Yc,2 +
n∑

μ=3

Yc,μ. (2)
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FIG. 3. (Color online) (a) Reconstruction of a single linear time-reversed sona at the linear port generated using a 50 ns Gaussian pulse.
(b) Reconstruction of a sona at the linear port constructed by overlapping two copies of the sona with a 50 ns time delay (or 99.5% overlap
of sonas), showing two distinct reconstructed pulses of lower amplitude. (c) Reconstruction of a sona at the linear port constructed using 16
overlapped sonas, with 50 ns time delays between copies. Sixteen reconstructed pulses are distinguishable above the noise or sidelobes. (d)–(e)
Images of “LI” and “NL” encoded using the linear sona (d) and nonlinear sona (e), transmitted exclusively to the linear and nonlinear ports in
the experimental setup, respectively.
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FIG. 4. (Color online) The model network of transmission lines connected in a star-graph topology. For each line, a length (Lμ), characteristic
admittance (Yc,μ), and reflectivity (�μ) of the unconnected end is defined. Ports 1 and 2 act as the points where energy is injected into, or
extracted from, the graph.

From Eq. (2) it is not possible to simultaneously match both
port 1 and port 2 [27]. In what follows, we choose Yc,2 =
Yc,1/2, for which there is a prompt reflection coefficient of
1/3 at port 2.

In the time-domain model, a wave form is “injected”
from one port into the network. At a particular time t , the
voltages in the network are described by the following system
of equations. The voltage VN (t) at the node connecting the
transmission lines in parallel is given by

VN (t) = (Vμ,+ + Vμ,−) (3)

for all μ, where Vμ,+ represents the voltage of the incoming
wave along line μ at the node, and Vμ,− the voltage of the
outgoing wave. The current entering the node contributed by
line μ is

Iμ(t) = Yc,μ[Vμ,+ − Vμ,−]. (4)

Summing over all n lines in the network,
n∑

μ=1

Iμ(t) = 0, (5)

as required by Kirchoff’s current law. Finally, the voltage for
a wave reflected from a line end and incoming to the node is
given by

Vμ,+(t) = e−2αμLμVμ,−(t − 2�tμ), (6)

where e−2αμLμ accounts for the attenuation, and the reflection
coefficient at the end of the line is taken to be �μ = 1 (μ >

2), and the attenuation αμ has been approximated as being
constant over the bandwidth of the signal.

Using Eq. (3) to express Vμ,− in Eq. (4) and substituting
in Eq. (5) determines the node voltage VN in terms of the
incoming voltages Vμ,+,

VN (t) = 2

∑n
μ=1 Yc,μVμ,+∑n

μ=1 Yc,μ

. (7)

A sona is calculated from the initial Gaussian pulse,
propagated from the broadcasting port (port 1) as V1,+(t), by
discretizing time, expressing Vμ,− = VN − Vμ,+, and using
Eq. (6) to update Vμ,+. Once VN (t) is known, the wave
form arriving at the receiving port can be recorded. In the
time-reversed direction, the transmitting and receiving ports
are swapped, and time-reversed sona is propagated from the
new transmitting port, creating a reconstruction at the new
receiving port.

Figure 5 shows the sonas and reconstructions generated by
the described model (a)–(c) and the linear time-reversal exper-
iment (d)–(f), for comparison. The sona in Fig. 5(b) was gener-
ated by propagating the Gaussian pulse with carrier frequency
f0 = 3.8 GHz shown in (a) through a transmission line network
from port 1 to port 2. The network was constructed from
ten line segments of lengths (1,1,4,6,10,16,25,40,60,100 m)
[28], with no loss (αμ = 0), and open circuited ends (�μ = 1)
for the nonport lines. The characteristic admittances are
Yc,μ = 0.02 S for lines 3–10, Yc,2 = 0.16 S, and Yc,1 = 0.32 S
[see Eq. (2)]. Note that the decay of the sona signal in Fig. 5(b)
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FIG. 5. (Color online) (a)–(c) Time domain signals in the linear two-port star graph with n = 10 lines. (a) Initial Gaussian pulse (50 ns,
3.8 GHz carrier) applied to port 1. (b) Resultant sona collected at port 2. (c) Reconstruction at port 1 from linear time reversal of sona in (b)
generated in the model. (d)–(f) Experimental results obtained in the linear resonant cavity. (d) Initial Gaussian pulse (50 ns, 3.8 GHz carrier)
applied to the transmitting port. (e) Resultant sona collected at the receiving port. (f) Reconstruction of the time-reversed sona in (e) recorded
at the original transmitting port.

is due to power leakage out through ports 1 and 2. The
reconstruction at port 1 shown in Fig. 5(c) was generated by
propagating the time reversal of the sona into the network from
port 2.

In the experiment, the Gaussian pulse at carrier frequency
f0 = 3.8 GHz shown in Fig. 5(d) was transmitted into the three-
dimensional linear cavity at the transmitting port, generating
the sona [Fig. 5(e)] recorded at the receiving port. The time-
reversed sona was retransmitted into the cavity at the receiving
port, reconstructing the wave form shown in Fig. 5(f) at the
transmitting port. The model closely approximates the real
time-reversal mirror, as shown by the sidelobes (t � 8.975 μs,
t � 9.025 μs) in the reconstruction in Fig. 5(c), which are
similar to those seen in Fig. 5(f). The model sidelobes result
because perfect time reversal is not achieved because the time-
forward reflected signal propagating backward in line 1 is
not recorded, reversed, and reinjected. Also, a portion of the
sona signal is lost due to the finite recording time in the time-
forward step, further degrading the reconstruction. In addition
to these mechanisms, the sidelobes in the experiment arise
from attenuation of the signals as they propagate.

B. Diode model

The nonlinear element placed in the experimental cavity
is modeled as a diode-terminating one transmission line, with
incoming wave forms reflecting off the termination. The diode
introduces harmonics to the reflected wave form and does not
model any particular diode in detail. The model also lacks
a time-delay or history-dependent mechanism; there is no
“memory” of previous states, as in more sophisticated diode

models [29]. In terms of the incoming and outgoing voltages,
the voltage across and current through the diode are given by

Vd = V+ + V−, (8)

Id = Yc[V+ − V−], (9)

where Yc is the characteristic admittance of the transmission
line connected to the diode. The current through the diode is
also expressed in terms of the diode voltage by the ideal diode
equation:

Id = Is

(
exp

Vd

VT

− 1

)
, (10)

where Is is the saturation current of the diode, and VT = kT /e

the thermal voltage. Solving this system of equations for V−
in terms of V+ (and defining f ≡ Is

YcVT
) gives

V− = V+ + Is

Yc

− VT W
(
f e

2 V+
VT

+f )
, (11)

where W (z) is the Lambert W function, defined as the inverse
of z = WeW .

Equation (11) is plotted in Fig. 6, using Is = 1 × 10−12A,
Yc = 0.02 S, and VT = 0.030 V. The map between the incom-
ing voltage V+ and the outgoing voltage V− is similar to an
offset tent map [30]. An important feature of the offset tent map
is the small-voltage linearity: for large (positive) incoming
voltages, the diode is strongly nonlinear, but for negative,
or small positive incoming voltages, the diode is essentially
linear. To validate the model diode we consider a simple
situation in which a Gaussian pulse of a microwave signal
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FIG. 6. (Color online) A plot of Eq. (11) (using Is = 1 × 10−12 A,
Yc = 0.02 S, and VT = 0.030 V), mapping the incoming voltage V+
to the outgoing voltage V− after reflection from the model diode. The
dotted blue line is V− = V+, showing the deviation from linearity of
the diode (plotted in the red solid line).

is reflected from a diode terminating a single transmission
line. In Figs. 7(a) and 7(b) a Gaussian wave form at a
carrier frequency f0 = 5 GHz is propagated along a single
semi-infinite transmission line terminated in a model diode (as
described above), as shown in the inset of Fig. 7(b). For the
low-amplitude (0.25 V) pulse in Fig. 7(a), the model diode acts
as an essentially linear termination, and no nonlinear effect is

seen on the reflected pulses. In Fig. 7(b) a high-amplitude (5 V)
pulse is strongly rectified, creating the reflected pulse shown.
The FFT of the rectified pulse is shown in Fig. 7(c), showing
several harmonics of the initial signal.

An experiment was conducted simulating the model trans-
mission line with a coaxial cable terminated by a microwave
diode (model 1N4148), and driven by Gaussian pulses from a
signal generator, as shown in the inset of Fig. 7(e). Reflections
of low-power pulses (−35 dBm) [shown in Fig. 7(d) are
unaffected, while the reflections of high-power (10 dBm)] in
Fig. 7(e) are strongly rectified. In Fig. 7(f) the FFT of the
rectified pulse is taken; the inset shows the second harmonic
component of the signal. This demonstrates that the diode
nonlinearity can be turned “on” or “off” simply by controlling
the amplitude of the signal reaching the nonlinear element.
It also demonstrates that the model has the essential property
of harmonic generation. The operation of the nonlinear time-
reversed mirror depends only on this generic property, and not
on any details of the nonlinear mechanism.

C. Full nonlinear model

The nonlinear model of a wave chaotic system is con-
structed by adding the diode terminating a transmission line
to the longest leg of a linear star-graph network of trans-
mission lines. The network was constructed from 10 line
segments of approximate lengths (1,1,7.07,8.66,11.18,13.23,

16.58,18.03,20.61,21.79m), with no loss (αμ = 0), and
perfectly reflecting ends (�μ = 1) for the nonport and non-
diode lines. The characteristic admittances were chosen to be

FIG. 7. (Color online) (a) A low-amplitude Gaussian pulse V− (100 ns, 5 GHz carrier) reflected from the model diode. (b) A high-amplitude
Gaussian pulse V− (100 ns, 5 GHz carrier) reflected from the model diode. Inset shows a schematic of the model for generating the pulse
reflections in (a)–(c). (c) FFT of the wave form shown in (b). (d) A low-power Gaussian pulse (500 ns, 5.0 GHz carrier) reflected from a diode
in a single-transmission-line experiment. (e) A high-power Gaussian pulse (500 ns, 5.0 GHz carrier) reflected from a diode in the experiment.
Inset shows the experimental setup for generating the pulse reflections in (d)–(f). (f) FFT of the pulse shown in (e). Inset shows a magnified
view of the second harmonic frequency.
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FIG. 8. (Color online) Wave forms generated by the nonlinear time-reversal star-graph model. (a) The sona generated by a low-amplitude
(0.25 V) Gaussian pulse (50 ns, 5 GHz carrier) injected at port 1, recorded at port 2. (b) The frequency spectrum (log FFT magnitude vs frequency)
of the sona in (a), demonstrating the linearity of the network for the low-amplitude pulse. Inset shows a diagram of the star-graph network, with
the diode terminating the longest line (no. 10) (c) The sona generated by a high-amplitude (5 V) Gaussian pulse (50 ns, 5 GHz carrier) injected
at port 1, recorded at port 2. (d) The frequency spectrum (log FFT magnitude vs frequency) of the sona in (c), with harmonics of the initial pulse
frequency generated by interaction with the model diode. (e) Reconstruction of the full time-reversed sona in (c) (plotted in red), measured at
port 1, compared to the initial Gaussian pulse (blue, larger amplitude). (f) Reconstruction of the time-reversed nonlinear sona (filtered to select
second harmonic) measured at the diode location (with the diode removed). (g) Wave form reflected from diode back into the network after the
initial excitation. (h) Wave form reflected from diode back into the network after the initial excitation, filtered to select the second harmonic.
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Yc,μ = 0.02 S for lines 3–10, Yc,2 = ∑n
μ=3 Yc,μ, and Yc,1 =∑n

μ=2 Yc,μ. Port 1 models the linear port of the experiment,
while port 2 models the receiving port. In the time-forward
computation, a Gaussian wave form at a fixed carrier frequency
f0 = 5 GHz is propagated from port 1 into the network,
portions propagating along each transmission line (including
to the diode). The voltage waves leave the node and propagate
down the transmission line to the terminations. For the linear
transmission lines, the returning voltage is calculated as a
simple reflection [using Eq. (6)]. For the nonlinear line,
the outgoing voltage is mapped to the returning voltage via
Eq. (11). Upon returning to the node, the voltage is redis-
tributed among the transmission lines. Voltage waves incident
on port 1 are absorbed; voltages incident on port 2 are recorded
as a sona signal and absorbed. The sona signal contains a linear
component (at the original carrier frequency) and a nonlinear
component arising from the diode, at several harmonics of the
original carrier frequency.

In the time-reversed computation, the recorded sona signal
is bandpass filtered into a linear sona, consisting of only
frequencies near f0, and a nonlinear sona, consisting of
frequencies near 2f0. Separately, the complete sona and each
filtered component are time-reversed and propagated into the
network (with the diode replaced with a linear reflection) from
port 2, and the reconstructions at port 1 and at the diode
location are recorded. Figure 8 shows the various recorded
wave forms collected throughout the computation; Fig. 8(a)
shows the sona generated at port 2 from a low-amplitude,
50 ns Gaussian pulse (0.25 V) at a carrier frequency of 5 GHz;
Fig. 8(b) shows the Fourier transform of the sona, showing the
lack of harmonics generated by the diode; Fig. 8(c) is a sona
generated from a high-amplitude, 50 ns Gaussian pulse (5 V);
while Fig. 8(d) gives the Fourier transform, showing several
harmonics of the initial frequency, generated by the nonlinear
behavior of the diode. In Fig. 8(e) the entire (unfiltered)
high-amplitude sona signal is time-reversed and retransmitted
at port 2, reconstructing at port 1. This reconstruction (in
red) is overlapped with the time-reversed original Gaussian
wave form (blue) showing both a smaller amplitude (from
perturbation of the system and loss through the ports) and
slight rectification due to the nonlinear components of the
sona. Figure 8(f) shows the reconstruction of the filtered
nonlinear sona, measured at the original diode location. This
reconstruction occurs at a location in time corresponding
to the ballistic propagation distance between the diode and
port 1. In Fig. 8(g), the (full frequency spectrum) wave
form initially incident upon and reflected from the diode
(measured at the diode) is shown, while in Fig. 8(h) the
filtered, second-harmonic component of the wave form in
Fig. 8(g) is plotted. The strong rectified pulses in Fig. 8(g)
[and the corresponding pulses in Fig. 8(h)] represent an initial
excitation propagating between the diode and the graph node.
This initial excitation occurs at a time delay corresponding to
the ballistic propagation distance between port 1 and the diode,
with subsequent pulses delayed by the round-trip length of the
line loaded with the diode. The secondary pulses result from
an artifact of the model, in which the strong pulse is briefly
trapped on the diode-loaded transmission line. Smaller pulses
in between these reflected pulses represent signals arriving
from other lines in the network, and are weakly rectified

compared to the initial ballistic pulse. These results are consis-
tent with the interpretation of the experimental data discussed
in Sec. II, that only the first ballistic high-amplitude pulse
arriving at the nonlinearity produces most of the harmonic
content.

IV. DISCUSSION

Despite its simplicity, the star-graph transmission line
model contains the essential features present in the experimen-
tal nonlinear time-reversal system and yields results in good
agreement with the experiments. The experimental system
contains many more channels for propagation than the model
transmission line network, which may account for the quan-
titative differences in the sona wave forms. Reconstructions
of time-reversed sonas in the model are imperfect, as they are in
the experiment, due to absorption of signal at the nonreceiving
port, and due to energy still reverberating in the system past
the duration of the sona recording. The model diode simulates
a stronger nonlinearity than is used in the single transmission
line experiment; the model diode generates several harmonics
of the initial signal, compared to the weak second harmonic
observed in the experiment. However, this detailed difference
does not affect the principle of nonlinear time reversal. The
signals created by the nonlinear object propagate through a
linear scattering environment before they are recorded. Hence
it does not matter what amplitude signal arrives at the nonlinear
object as long as it generates harmonic response, or on the
details of the nonlinearity, the function of the nonlinear time
reversal mirror is generic.

In both the model and the experiment, the addition of
more propagation paths limits the power incident on the
nonlinearity in the initial part of the time-forward step
and the strength of the harmonics generated. The exclusive
reconstruction of the nonlinear signal upon the location of the
nonlinearity is demonstrated in the model, consistent with the
experiment. The reconstructed nonlinear signal can be seen at
the nonlinear element location, at a time delay equal to the
propagation time between the nonlinear element location and
the initial transmitting port. This justifies our interpretation
that the initial ballistic signal arriving at the nonlinearity
is responsible for the bulk of the nonlinear sona in the
experiment.

The ability to “find” a nonlinear object and exclusively
direct signals to it opens up new applications, such as wireless
power transfer with low background power level, precision
hyperthermic treatment of tumors with minimal disruption
to other tissue, or detecting changes in both the scattering
environment and a nonlinear object.

V. CONCLUSIONS

We have demonstrated time reversal of electromagnetic
signals in a system containing a passive, harmonic-generating
nonlinear element, in which reverse propagation of the time-
reversed received nonlinear excitations forms a reconstruction
exclusively upon the nonlinear element. Overlapping of multi-
ple sonas allowing resolvable reconstructions of distinct pulses
is demonstrated, allowing for exclusive transmission of data
by a series of constructed sonas. The utility of this technique
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is demonstrated by transmission of images to the nonlinearity
by means of overlapping broadcast of single-pulse nonlinear
sonas. A model of the nonlinear system is constructed, using a
star-graph network of transmission lines, with a passive model
diode terminating one line as a nonlinear element in the system.
This model recovers features seen in the experimental system,
and models time reversal of linear and nonlinear signals in
good agreement with the experimental results.
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