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I first present the design and use of a near-field permeability imaging 

microwave microscope to measure local permeability and ferromagnetic 

resonant fields. This microscope is then modified as a near-field nonlinear 

microwave microscope to quantitatively measure the local nonlinearities in 

high-Tc superconductor thin films of YBa2Cu3O7-δ (YBCO). The system 

consists of a coaxial loop probe magnetically coupling to the sample, a 

microwave source, some low- and high-pass filters for selecting signals at 

desired frequencies, two microwave amplifiers for amplification of desired 

signals, and a spectrum analyzer for detection of the signals. When 

microwave signals are locally applied to the superconducting thin film 

through the loop probe, nonlinear electromagnetic response appearing as 

higher harmonic generation is created due to the presence of nonlinear 



mechanisms in the sample. It is expected that the time-reversal symmetric 

(TRS) nonlinearities contribute only to even order harmonics, while the time-

reversal symmetry breaking (TRSB) nonlinearities contribute to all 

harmonics. The response is sensed by the loop probe, and measured by the 

spectrum analyzer. No resonant technique is used in this system so that we 

can measure the second and third harmonic generation simultaneously. The 

spatial resolution of the microscope is limited by the size of the loop probe, 

which is about 500 µm diameter. The probe size can be reduced to ~ 15 µm 

diameter, to improve the spatial resolution. 

    To quantitatively address the nonlinearities, I introduce scaling current 

densities JNL(T) and JNL’(T), which measure the suppression of the super-fluid 

density as ( ) ( )2)()('1)0,(),( TJJTJJTnJTn NLNLss −−= , where J is the applied 

current density. I extract JNL(T) and JNL’(T) from my measurements of 

harmonic generation on YBCO bi-crystal grain boundaries, and a set of 

variously under-doped YBCO thin films. The former is a well-known 

nonlinear source which is expected to produce both second and third 

harmonics. Work on this sample demonstrates the ability of the microscope to 

measure local nonlinearities. The latter is proposed to present doping 

dependent TRS and TRSB nonlinearities, and I use my nonlinear microwave 

microscope to measure the doping dependence of these nonlinearities. 

  
 
 



MEASUREMENTS OF DOPING-
DEPENDENT MICROWAVE 

NONLINEARITIES IN HIGH-
TEMPERATURE SUPERCONDUCTORS 

 

by 

Sheng-Chiang Lee 

 
 

Thesis submitted to the Faculty of the Graduate School of the 
University of Maryland, College Park in partial fulfillment 

of the requirements for the degree of 
Doctor of Philosophy 

2004 
 
 
 

Advisory Committee: 
 
Professor Steven M. Anlage, Chair/Advisor 
Professor J. Robert Anderson 
Assistant Professor Michael Fuhrer 
Associate Professor Romel Gomez 
Professor Frederick C. Wellstood 

  
 
 



 

 

©Copyright by 

Sheng-Chiang Lee 

2004

  
 
 



DEDICATION 

To Connie 

and my precious Lord, 

Jesus Christ 

ii 



 

ACKNOWLEDGMENTS  

 

To me, doing research is an everlasting struggle that only furthers our understanding of the 

mysterious creation of God, but also challenges our personal integrity and character. 

Through the years I have spent here, I have learned a lot and been very grateful. 

    First, I would like to thank my advisor, Steve Anlage, for his patience and continual 

encouragement, even when my research was not going so well. His enthusiasm for physics 

and positive attitude have been an inspiration to me. Secondly, I would like to give my 

appreciation to my co-workers: Atif Imtiaz, Dragos Mircea, Sameer Hammedy, Greg 

Ruchti, Nathan Orloff, and Marc Pollak, with whom I have had many interesting 

conversations not only about physics, but about other things in life. I would also like to 

thank David Steinhauer, Andy Schwartz, and Johan Feenstra, who have been great 

examples and encouragement to me in my early stage of research. I thank Matt. Sullivan 

for his help in making YBCO thin films, and Ben Palmer for adjusting the oxygen 

deficiency of these films for me. I would like to thank Fred Wellstood and Chris Lobb, 

with whom I have had very helpful conversations. I would like to thank Bob Anderson, 

Michael Fuhrer, Fred Wellstood, and Romel Gomez for being on my doctoral defense 

committee. I am also grateful for support from the National Science Foundation (NSF) and 

 iii 
 
 
 
 



 

from the NSF Material Research Science and Engineering Center through support of 

Shared Experimental Facility, through the GOALI program and the DARPA TASS 

program to my microscope. 

    I thank my parents and parents-in-law for their encouragement and support through these 

years. I would like to especially thank my wife Connie, who was always encouraging, 

supportive, and loving as I struggled with my research. I truly believe that she deserves 

another P.H.D. degree (Push her Husband to Doctoral degree). Finally and most 

importantly, I would like to thank my God for all these blessings He has given me. Without 

His help and guidance, mercy and grace, I would not have been able to walk through these 

years and become who I am today.  

 iv 
 
 
 
 



 

TABLE OF CONTENTS 

Table of Contents......................................................................................................................v 

List of Tables ............................................................................................................................x 

List of figures...........................................................................................................................xi 

Glossary .................................................................................................................................xvi 

1. Introduction to the Nonlinear Near-Field Microwave Microscope.....................................1 

1.1 Introduction....................................................................................................................1 

1.2 Ancestor of the Nonlinear Near-Field Microwave Microscope:   The Permeability 

      Imaging Near-Field Microwave Microscope................................................................5 

1.2.1 Introduction ..............................................................................................................5 

1.2.2 Experimental Setup ..................................................................................................6 

1.2.3 Samples ....................................................................................................................9 

1.2.4 Results of Permeability Imaging ...........................................................................10 

1.2.5 CMR Field Imaging ...............................................................................................17 

1.2.6 Conclusions ............................................................................................................22 

1.3 The Nonlinear Near-Field Microwave Microscope ...................................................22 

 v 
 
 
 
 



 

1.3.1 Introduction ............................................................................................................22 

1.3.2 Experimental Setup ................................................................................................24 

1.3.3 Principle of Operation............................................................................................27 

2. Introduction to Nonlinear Superconductivity ....................................................................30 

2.1 Nonlinear Meissner Effect...........................................................................................32 

2.1.1 The Ginzburg-Landau Theory ...............................................................................32 

2.1.2 The Bardeen-Cooper-Schrieffer (BCS) Theory....................................................35 

2.1.3 Prior Experiments on the Nonlinear Meissner Effect ...........................................42 

2.2 Vigni’s model of modulating normal fluid density by external AC fields ................45 

2.3 Andreev Bound State Nonlinearities...........................................................................48 

2.4 Another Potential TRSB Nonlinearity – Varma’s proposal.......................................56 

3. The Nonlinear Scaling Current Densities ..........................................................................58 

3.1 Time-Reversal Symmetric (TRS) Nonlinearities .......................................................60 

3.1.1 Introduction ............................................................................................................60 

3.1.2 Algorithm for Extracting JNL from Experimental Data.........................................62 

3.2 Time-Reversal Symmetry-Breaking (TRSB) Nonlinearites ......................................67 

3.2.1 Introduction ............................................................................................................67 

3.2.2 Algorithm for Extracting JNL’ from Experimental Data .......................................69 

 vi 
 
 
 
 



 

3.3 Predicted harmonics and measured harmonics: coupling and amplification issues..70 

3.3.1 Analytical Model of Loop/Sample Interactions Calculated by Mathematica™..71 

3.3.2 Numerical Simulation using the High Frequency Structure Simulator (HFSS) ..73 

3.3.3 Estimations of the Figures of Merit: Γ and Γ’.......................................................75 

3.3.4 Estimations of the Probe/Sample Coupling ..........................................................78 

3.3.5 Estimations of Attenuation and Amplification in the Microwave Circuit ...........83 

4. Microwave Nonlinearities of the YBCO Bi-crystal Grain Boundary...............................85 

4.1 Introduction..................................................................................................................85 

4.2 Sample..........................................................................................................................87 

4.3 Spatially Resolved Measurement – 1D and 2D measurements .................................91 

4.4 Modeling the Origins of Second and Third Harmonic Generation in the Bi-crystal 

      Grain Boundary............................................................................................................94 

4.4.1 Uncoupled ERSJ Model Solved by Mathematica.................................................96 

4.4.2 Coupled ERSJ Model by WRSpice®.....................................................................99 

4.5 Vortex Dynamics Discussion with WRSpice® Simulations ....................................102 

4.5.1 Oates’ ERSJ calculation.......................................................................................103 

4.5.2 Vortex Dynamics in Our YBCO Bi-crystal Grain Boundary.............................106 

4.6 Extraction of JNL from the Data.................................................................................108 

 vii 
 
 
 
 



 

4.7 Conclusion .................................................................................................................109 

5. Doping Dependent Nonlinearities in HTSC – System and Sample Characterization....111 

5.1 Experimental Setup and Sample Description ...........................................................112 

5.1.1 Brief review of the microscope............................................................................112 

5.1.2 Samples ................................................................................................................113 

5.1.3 Field dependent P2f and Importance of the Magnetic Shielding Assembly .......115 

5.1.4 Determination of the doping level of YBa2Cu3O7-δ ............................................123 

5.2 Doping-dependent quantities in HTSC.....................................................................123 

5.2.1 London Penetration Depth ...................................................................................124 

5.2.2 Zero-Temperature Condensation Energy ............................................................125 

5.3 Mechanisms of nonlinear response in under-doped YBCO.....................................127 

5.3.1 Background nonlinearity of the experimental apparatus ....................................127 

5.3.2 Granularity and weak links ..................................................................................129 

5.3.3 TRSB Physics.......................................................................................................130 

5.3.4 Tests to distinguish which model is most viable.................................................131 

6. Doping Dependent Nonlinearities in HTSC  – Discussion of 2nd and 3rd Harmonic Data 

     ..........................................................................................................................................133

6.1 Magnitude of P3f varies with doping levels ..............................................................134 

 viii 
 
 
 
 



 

6.1.1 Fitting and Temperature Normalization of the P3f(T) Measurements ................135 

6.1.2 Extraction of JNL from the P3f data ......................................................................141 

6.1.3 Note on the choice of λ(x,T) ................................................................................146 

6.2 The unusual P2f peak seen near Tc in all under doped films.....................................147 

6.2.1 Extraction of JNL’ from P2f data ...........................................................................149 

6.3 Power dependence measurements of P2f and P3f ......................................................155 

6.4 Conclusion .................................................................................................................159 

7. Summary and Future Work ..............................................................................................161 

7.1 Summary....................................................................................................................161 

7.2 Future Work...............................................................................................................163 

7.2.1 Sensitivity to the Nonlinearities...........................................................................164 

7.2.2 Spatial Resolution ................................................................................................167 

7.3 Conclusion .................................................................................................................173 

APPENDIX A Fourier transforms used in data analysis and model calculations..............175 

APPENDIX B How to use wrspice® software?...................................................................179 

REFERENCES .....................................................................................................................188 

 

 ix 
 
 
 
 



 

LIST OF TABLES 

Table 2.1 Summary of Yip and Sauls’ predictions of NLME...............................................40 

Table 2.1 Summary of expected experimental signatures of the NLME..............................42 

Table 3.1 Important dimensions of simulated coaxial cables................................................73 

Table 3.2 Simulated figures of merit and coupling coefficient by analytical and HFSS 

models for different probe sizes.................................................................................82 

Table 5.1 Summary of oxygen-doped YBCO thin film samples. .......................................114 

Table 5.2 Summary of the measurements of λ on YBCO ceramics, thin films, and single 

crystals. .....................................................................................................................125 

Table 6.1 Summary of the fitting parameters used in the Ginzburg-Landau model for P (T) 

near T  for most of my samples.

3f

c ..............................................................................137

Table A.1 Fourier coefficients in Eq. A.3 calculated via Eq. A.4.......................................176 

 

 x 
 
 
 
 



 

LIST OF FIGURES 

Fig. 1.1 Different classes of near-field microwave microscopes. ...........................................3 

Fig. 1.2 Schematic of the permeability imaging near-field microwave microscope. .............7 

Fig. 1.3 Equivalent circuit model of the probe/sample coupling. ...........................................8 

Fig. 1.4 The schematic of electric probe and magnetic loop probe, and arangement of 

metallic tapes while taking line-scan data. ................................................................11 

Fig. 1.5 A line scan of ∆f and Q across the ferromagnetic and paramagnetic metal glass 

tapes using an electric probe. .....................................................................................13 

Fig. 1.6 A line scan of ∆f and Q across the ferromagnetic and paramagnetic metal glass 

tapes using a loop probe.............................................................................................14 

Fig. 1.7 Distance dependence of the frequency shift and Q factor measured at different 

frequencies..................................................................................................................16 

Fig. 1.8 FMR phenomenon observed in the microwave microscope on a LSMO single 

crystal in ∆f(H) and Q(H) measurements using the magnetic loop probe................19 

Fig. 1.9 Images of variations in ∆f and Q demonstrating the variation in the FMR field. ...21

Fig. 1.10 Schematic of the nonlinear near-field microwave microscope..............................25 

Fig. 1.11 Pictures of the microscope. .....................................................................................26 

 xi 
 
 
 
 



 

Fig. 2.1 Schematics of the GL calculation performed by Gittleman et. al. ..........................34 

Fig. 2.2 Fermi surfaces of s-wave and d-wave superconductors...........................................38 

Fig. 2.3 Calculation of bΘ(T) for s-wave and d-wave superconductors. ...............................41 

Fig. 2.4 P3f (T) measured on an unpatterned NbN thin film near the Tc ~ 10.5K.................45 

Fig. 2.5 Schematic of the formation of Andreev bound state................................................49 

Fig. 3.1 Schematic of the expected JNL(T) for various nonlinear mechanisms in HTSC. ....62 

Fig. 3.2 Schematic of the integral for estimation of the inductance per unit length.............63 

Fig. 3.3 Schematic of the ideal-circular-loops model............................................................72 

Fig. 3.4 Setup in HFSS to simulate the probe/sample interaction.........................................75 

Fig. 3.5 Microwave current distribution |K| (A/m) simulated by HFSS. ..............................77 

Fig. 3.6 The configuration of two circular loops for the idea-loop model............................78 

Fig. 3.7 Setup for estimating the coupling coefficient M/Lloop using HFSS. ........................80 

Fig. 3.8 Plot of Γ and Γ’ calculated by both the analytical model and HFSS. .....................83 

Fig. 4.1 P3f(T) measured above and away from the YBCO bi-crystal gain boundary. ........88 

Fig. 4.2 Power dependence of P2f and P3f signals measured above and away from the bi-

crystal grain boundary at 60K....................................................................................90 

Fig. 4.3 A line-scan of P2f(X) and P3f(X) across the bi-crystal grain boundary. ...................92 

 xii 
 
 
 
 



 

Fig. 4.4 Spatially resolved 2D images of P2f and P3f containing the YBCO bi-crystal grain 

boundary. ....................................................................................................................93 

Fig. 4.5 Schematic of the un-coupled ERSJ model. ..............................................................97 

Fig. 4.6 Coupled and uncoupled ERSJ model calculations compared with the experimental 

P2f and P3f data............................................................................................................99 

Fig. 4.7 Schematic of the coupled ERSJ model simulated by WRSpice®..........................101 

Fig. 4.8 Trajectories of vortices simulated by Oates’ group. ..............................................104 

Fig. 4.9 Trajectories of vortices in one RF cycle simulated for Oates’ setup. ....................105 

Fig. 4.10 WRSpice® simulation for vortex dynamics in the grain boundary. ....................107 

Fig. 4.11 The extracted JNL(X) from the P3f(X) experimental data in Fig. 4.3.. ..................109 

Fig. 5.1 Im(χ) measrued from samples with different doping levels..................................115 

Fig. 5.2 P2f(T) and P3f(T) of an optimally doped YBCO thin film (MCS1). ......................117 

Fig. 5.3 The effect of external magnetic fields on P2f. ........................................................119 

Fig. 5.4 Magnetic shielding assembly made by Amuneal...................................................121 

Fig. 5.5 Harmonic measurements of different samples taken after installation of the 

magnetic shielding assembly. ..................................................................................122 

Fig. 5.6 Zero-temperature condensation energy density and Tc of Ca doped YBCO. .......126 

Fig. 5.7 P2f and P3f generated by the system (background nonlinearity). ...........................129 

 xiii 
 
 
 
 



 

Fig. 6.1 A typical harmonic data of an under-doped YBCO thin film with Tc ~ 75K. ......134 

Fig. 6.2 Typical P3f(T) data fitted by the Ginzburg-Landau theory. ...................................136 

Fig. 6.3 P3f(T) data taken from variously doped YBCO thin films without the magnetic 

shielding assembly. ..................................................................................................139 

Fig. 6.4 P3f(T) data taken from variously doped YBCO thin films with the magnetic 

shielding assembly. ..................................................................................................140 

Fig. 6.5 Linear fit ofλ(T=0)versus the doping level x. ........................................................142 

Fig. 6.6 JNL(0.97Tc) converted from the same set of P3f data taken with/without the 

magnetic shielding assembly on variously doped YBCO thin films......................144 

Fig. 6.7 P2f(T) data near Tc normalized by the Tc’s of the oxygen-doped samples.............148 

Fig. 6.8 JNL’ at 0.97Tc extracted from P2f(T) data of variously doped YBCO thin films. ..150 

Fig. 6.9 JTRSB vs. T/Tc(ac) for variously doped YBCO thin films. ......................................152 

Fig. 6.10 P2f(Pf) and P3f(Pf) of MCS4, and P2f(Pf) and P3f(Pf) of MCS1 near Tc taken 

without the magnetic shielding assembly................................................................157 

Fig. 6.11 P2f(Pf) and P3f(Pf) of degraded YBCO thin films.................................................158 

Fig. 6.12 P2f(Pf) and P3f(Pf) of MCS2 taken with the magnetic shielding assembly..........159 

Fig. 7.1 Schematic of a patterned loop probe on a sapphire substrate. ...............................166 

Fig. 7.2 The extension of z-piezo as a function of input microwave power.......................168 

 xiv 
 
 
 
 



 

Fig. 7.3 Schematic of the re-entrant cavity. .........................................................................170 

Fig. 7.4 STM topography image of a 200nm thick c-axis YBCO film on a STO 30º mis-

oriented bi-crystal substrate. ....................................................................................172 

Fig. 7.5 Simultaneously taken harmonic data with STM imaging......................................173 

 

 xv 
 
 
 
 



 

GLOSSARY 

1D, 2D. One dimensional, two dimensional 

AC. Alternating current 

ABS. Andreev bound state 

APS. American Physical Society 

BCS. Bardeen-Cooper-Schrieffer 

CMR. Colossal Magneto-Resistance 

dBm. Logarithmic scale of power: power in dBm = 10µLog10(power in mW) 

DOS. Density of State 

ERSJ. Extended Resistively Shunted Josephson Junction 

FFC. Frequency Following Circuit 

FMR. Ferromagnetic Resonance 

GB. Grain boundary 

GL. Ginzberg-Landau  

HFSS. High-Frequency Structure Simulator 

HTSC, HTS. High-Temperature Superconductors 

J. Current density (A/m2) 

 xvi 
 
 
 
 



 

JNL. Nonlinear scaling current density (A/m2) 

JTRSB. Current density of spontaneous currents generated by TRSB nonlinearities (A/m2) 

K. Surface current density (A/m) 

L. Self-inductance 

LPS. Laboratory for Physical Science 

LSMO. La0.8Sr0.2MnO3

M. Mutual inductance 

MCS. Label of samples made by Matt. Sullivan 

NGO. NdGaO3

NL. Nonlinear; Nonlinearity 

NLME. Nonlinear Meissner effect 

Pf. Power of the fundamental tone 

P2f. Power of the second harmonic generation 

P3f. Power of the third harmonic generation 

PIMD. Power of the intermodulation distortion 

PLD. Pulsed Laser Deposition 

Q. Quality factor of a microwave resonator 

QCP. Quantum critical point 

 xvii 
 
 
 
 



 

RF. Radio frequency 

SNMM. Scanning Near-field Microwave Microscope 

SQUID. Superconducting Quantum Interference Device 

STO. SrTiO3

t. Time; also used as thickness of films 

T. Temperature 

Tc. Critical temperature of superconducting phase transition 

TRS. Time-Reversal Symmetric 

TRSB. Time-Reversal Symmetry Breaking 

UD. Under-doped 

VAV. Vortex-Anti-Vortex 

WRSpice. Superconducting circuit simulation software developed by Whitely Research 
Inc. 

YBCO. YBa2Cu3O7-δ

ZBCP. Zero-biased conductance peak 

∆f. Frequency shift of a microwave resonator 

µ-SR. Muon spin relaxation 

τ. Reduced temperature normalized by the critical temperature of superconductors 

 xviii 
 
 
 
 



CHAPTER 1 

INTRODUCTION TO THE NONLINEAR NEAR-FIELD 

MICROWAVE MICROSCOPE  

1.1 Introduction 

Traditional microwave measurements of electromagnetic properties of materials are done 

on the length scales of centimeters, which is the free-space wavelength of microwave 

signals. The earliest microwave measurement on superconductors was done by Pippard [1] 

using a superconducting microwave resonator. In this measurement, however, what was 

measured was an averaged property along the sample, weighted by the standing-wave 

pattern in the resonator.  

    Later refinements of this technique utilized the cavity perturbation method, in which the 

sample is placed in a small region of relatively uniform magnetic or electric field in a large 

(compared to the sample) electromagnetic cavity. The properties of the sample are obtained 

by comparing the change of the resonant frequency and quality factor of the resonator in 

the presence and absence of the sample. However, the measured quantities are still 

averaged over the sample, weighted by the distribution of fields or currents on the sample. 

1 
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The interpretation of these results is only simple in the case of a homogeneous sample with 

ellipsoidal geometry.  

    Other resonant or non-resonant techniques are used in far-field microscopy, but the 

spatial resolution is limited to a few centimeters (~ microwave wavelength), and large 

screening currents are generated, especially near the edges, by globally applying fields to 

the sample. This means that such techniques only study the nonlinearities from the edges 

and corners, which are dominated by extrinsic nonlinear mechanisms, e.g. boundaries and 

defects. This is why near-field microscopy becomes an important approach for studying 

local electromagnetic properties of materials. 

    Near-field microwave microscopy is a state-of-the-art technique established over many 

years by various research and industrial groups. In principle, Synge should probably be 

credited as the intellectual founder of near-field microscopy, based on his work in 1928 [2]. 

However, the earliest high-resolution quantitative microwave measurements were 

performed by the ferromagnetic resonance community [3,4]. The most important 

advantages of near-field microscopy are the superior spatial resolution, and sensitivity to 

local electromagnetic properties.  

    Unlike far-field microscopy, the limit of the spatial resolution is no longer set by the 

wavelength of the microwave signals, but the geometry of the near-field microscope. 

Figure 1.1 shows some typical classes of near-field microscopes discussed in Ref. [5]. 
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Generally, near-field microwave microscopy can work in both resonant (Fig. 1.1(a) and (c)) 

and non-resonant mode (Fig. 1.1(b), (d) and (e)). Fig. 1.1(a) shows a resonant cavity, which 

is coupled to a sample by an evanescent mode through a small hole (the aperture) on the 

cavity wall. The evanescent wave is locally applied to the sample, and the perturbation to 

the cavity due to the sample is measured through the shift in resonant frequency and change 

in quality factor Q of the cavity. Images of local properties can therefore be taken while 

scanning the sample under the hole. The spatial resolution is determined by the larger of the 

size of the aperture and the sample/cavity separation, which can be much smaller than the 

wavelength. 

 
Fig. 1.1 Different classes of near-field microwave 
microscopes. Illustrations are taken from Ref. [5]. 
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    The same principle is used in Fig. 1.1(c), which has a section of coaxial transmission line 

or a resonator, decoupled from the rest of the microwave circuit by a capacitor (or 

inductor). Samples are placed very close to the end of the coaxial cable (the probe), and 

perturb the resonator. The locality is determined by the larger of two dimensions: the 

diameter of the inner conductor of the probe, and the separation between the probe and the 

sample. In this case, the type of probe/sample interaction can vary depending on the desired 

contrast mechanism. For example, the magnetic permeability imaging microwave 

microscope [6], which will be discussed later in this chapter, is in this category, but uses a 

shorted loop probe, which enhances its magnetic coupling to the sample.  

    Fig. 1.1(b) is a version of (c), in which there is no resonator. Microwave signals are sent 

to the sample and can be picked up after reflection from or transmission through the 

sample. The nonlinear microwave microscope [7], which is used for most of my work and 

will be discussed later, is in this category, operating in the reflection mode. Figure 1.1(e) 

shows the scanning microwave SQUID microscope [8], which uses a Superconducting 

QUantum Interference Device as a passive detector of the local magnetic fields. Such a 

microscope normally works in a narrow frequency band on the order of hundreds of kHz. 

Efforts to make broadband SQUID microscopes are in progress. Finally, Fig. 1.1(d) 

illustrates the advantage of the extremely high spatial resolution of scanning probe 

microscopy that utilizes very sharp tips (e.g. STM, AFM, etc.). Microwave signals are sent 

through the tip/sample coupling, which is controlled by independent means while scanning 
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[9]. However, making the microwave system work independently from the coupling-

control mechanism is a difficult task.  

    In the remainder of this chapter, I demonstrate my work in permeability and 

ferromagnetic resonance imaging using a near-field microwave microscope in resonant 

mode [6], and the nonlinear near-field microwave microscope [7], which I used later in 

studying the local nonlinearities of superconductors. 

1.2 Ancestor of the Nonlinear Near-Field Microwave Microscope:  
 The Permeability Imaging Near-Field Microwave Microscope 

1.2.1 Introduction 

The extraordinary increase in the density of magnetic storage media and the access speeds 

of read/write heads has led to an increased interest in measuring local microwave magnetic 

properties of materials on short length scales. It is also of interest to evaluate the 

homogeneity of magnetic properties of samples, such as the local Curie temperature, 

magnetization, and microscopic phase separation into magnetic and nonmagnetic regions. 

Many techniques exist to measure the global microwave permeability or susceptibility of 

materials [10]. Progress has also been made in scanning microscopes which are designed to 

image radio frequency magnetic fields [8,11,12], electron paramagnetic resonance [13], 

and ferromagnetic resonance (FMR) [3,14,15,16]. However, few of these techniques 

measure microwave permeability on sub-mm length scales [17,18].  



 

 6 
 
 
 
 

    To fulfill this need, we have developed a technique for measuring local permeability 

using a scanning near-field microwave microscope (SNMM). Previously, the SNMM has 

been used to image conductivity [19] and dielectric properties [20] of materials with an 

open-ended tip probe, which has a maximum electric field and minimum magnetic field at 

the probe end, thus enhancing the electric coupling but minimizing the magnetic coupling. 

In this section, I discuss the utilization of a shorted loop probe, which couples 

magnetically, instead of electrically, to a sample. 

1.2.2 Experimental Setup 

Our SNMM is a driven resonant coaxial transmission line connected to a semi-circular loop 

formed by shorting the inner conductor of a coaxial cable to the outer conductor. Both inner 

and outer conductors are made of Cu, so that no magnetic materials interfere with the 

magnetic coupling between the probe and sample. We use a frequency following circuit 

(FFC) [21] designed in our group, and a lock-in amplifier in a feedback loop to lock to one 

of the resonant frequencies of the coaxial resonator (Fig. 1.2). We then monitor the 

frequency shift, ∆f, due to perturbations from the sample, which is scanned under the 

probe. By modulating the microwave frequency of the source and monitoring twice the 

modulation frequency, the losses in the sample contributing to the Q factor of the resonator 

can be measured as well. Details of this microscope and how to determine the sample 

properties from the frequency shift and Q factor can be found in Refs. [19-22]. 
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Fig. 1.2 Schematic of the permeability imaging near-field microwave 
microscope. 

    We use the same transmission line model established by David Steinhauer [21] to 

understand the observed changes in the resonant frequency and quality factor. However, 

since I use a different type of probe than Steinhauer’s, the probe/sample coupling 

mechanism and the effective load impedance are different. To properly describe my 

system, I use the equivalent circuit shown in Fig. 1.3 in the transmission line model to 

represent the probe/sample coupling and how the load impedance affects the characteristics 

of the transmission line resonator. The loop probe is represented as an inductor L0, the test 

material as a series combination of its effective inductance LX and complex impedance 

, and the coupling as a mutual inductance M. For materials with good XXX iXRZ +=
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enough conductance so that the microwave skin depth is much smaller than the sample 

thickness, we model the sample inductance by an identical image of the loop probe, so that 

LX = L0. The self-inductance of the loop probe is roughly estimated as aL 00 25.1 µ≈  [23], 

assuming a circular loop with inner diameter a @ wire thickness = 200 µm. In this case, 

.  HL 10
0 1014.3 −×≅

 
Fig. 1.3 Equivalent circuit model of the probe/sample coupling. 

    In the high frequency limit, the surface impedance of the sample can be written as  

    ωρµµ rX iZ 0= ,  (1.1) 

where µr is the complex relative permeability of the material, ω is the microwave angular 

frequency, and ρ is the resistivity of the material, which is consider to be independent of µr, 

and real.  

    Although the mutual inductance M can be estimated analytically by calculating the two-

circular-loop model, it is merely a rough approximation of the real geometry. Therefore, 

when we first built this microscope, we had to treat the value of M as a fitting parameter. 
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From the analytical two-circular-loop model, we know M º 10-12 – 10-11 H, as will be 

discussed in Chapter 3. The microwave resonator of our microscope is a transmission line 

that is capacitively coupled to a microwave source. The frequency shift and Q are 

calculated using microwave transmission line theory, which is described in detail in Ref. 

[21]. 

    In the typical operating frequency range (e.g. f = 6.5 GHz), we can take 

 to be much greater than the sample impedance Ω≈×××× − 3.12103105.62~ 109
0 πωL

Ω≈×××××××= −− 7.010200105.625104~ 897
0 ππωρµµ rxZ , taking 5=rµ  and 

cmΩ= µρ 200  typical of our samples. From the equivalent circuit shown in Fig. 1.3, we 

find that the load impedance presented by the probe and sample is  

    ,  (1.2) 

where the coupling coefficient 

)()1( 22
0 XXLoad iXRkkLiZ ++−≅ ω

XLLMk 0=  is a purely geometrical factor, and 

 is the surface impedance of the sample. From the transmission line model, 

we know that to a good approximation, the frequency shift is produced by the imaginary 

part of Z

XXX ZiXR =+

Load, while the real part of ZLoad determines the Q of the microscope.[21] 

1.2.3 Samples 

The samples we studied are two metallic glass tapes, made of Fe40Ni40P14B6 and 

Fe32Ni36Cr14P12B6, and a La0.8Sr0.2MnO3 (LSMO) single crystal. The difference in 
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composition of the metallic glass tapes makes the former ferromagnetic (FM) and the latter 

paramagnetic (PM) at room temperature, although both have the same resistivity ρ = 

150µΩcm. This ensures that any difference observed in ∆f and Q signals with the 

microwave microscope are due solely to the difference in permeability. This is important 

since the microscope may also be sensitive to the conducting properties of materials.  

    LSMO is a colossal magneto-resistive material, whose Curie temperature is TC = 

305.5K. This sample had been studied extensively by Dr. Andrew Schwartz [24] in our 

group, and exhibits ferromagnetic resonance (FMR) below TC. I wanted to use the FMR 

phenomenon in this sample to test the ability of my microscope to measure local magnetic 

properties. 

1.2.4 Results of Permeability Imaging 

To find the sensitivity of the loop probe to magnetic properties, I measured the metallic 

glass tapes with both the electric (open-ended) and loop probes as shown in Fig. 1.4. 
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Fig. 1.4 (a) Schematic of electric probe and magnetic loop probe. 
(b) Arrangement of metallic tapes while taking line-scan data. The 
ferromagnetic tape was magnetized vertically. 

    From prior work in our group, we know that for a sample with uniform and 

homogeneous electrical properties (i.e. dielectric constant, resistivity, etc.), the variations in 

∆f and Q signals of the microscope with an electric probe represent the change of 

topography, which determines the coupling between the samples and probe while the probe 

is scanning on a horizontal plane. Despite the fact that the tapes have slightly different 

thickness, which appears as different height, the measurement on the tapes with the electric 

probe is essentially indistinguishable in both ∆f and Q (see Fig. 1.5). It is noted that the 
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oscillating features in both ∆f and Q are likely due to the lateral and longitudinal standing 

wave patterns in the strip samples. These patterns were investigated previously by David 

Steinhauer [21].   

    Next, I simply changed the probe tip on the microscope and re-measured the tapes. With 

the loop probe, the ferromagnetic tape gave a strong reduction in the Q, whereas the ∆f data 

remained indistinguishable between the ferro- and paramagnetic tapes (Fig. 1.6). It is worth 

noting that the frequency shift data shows opposite trends in the electric probe and 

magnetic probe measurements. This is because the probes couple to the sample differently. 

The electric probe couples to the sample capacitively, which leads to an effective 

lengthening of the electric length of the resonator and a reduction of the resonant 

frequency. On the other hand, the magnetic probe couples to the sample inductively, and 

results in an effective shortening of the electric length of the resonator and higher resonant 

frequencies. 
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Fig. 1.5 A line scan of ∆f (dashed curve) and Q (solid curve) across the 
ferromagnetic (left) and paramagnetic (right) metal glass tapes using an 
electric probe made of an .034” outer diameter coaxial cable, whose inner 
conductor has diameter ~ 200 µm. 
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Fig. 1.6 A line scan of ∆f (dashed) and Q (solid) across the 
ferromagnetic (left) and paramagnetic (right) metal glass tapes 
using a loop probe made of the same coaxial cable as the electric 
probe. 

    To understand the result with a loop probe, we note that the coupling coefficient k is 

similar for both materials due to the similar topography of the tapes. Since the imaginary 

part in the second term in Eq. 1.2 is small, i.e. , and k)1( 2
0

2 kLXk X −<< ω 2 << 1, the 

change of the total imaginary part of ZLoad due to the variation in XX is very small in 

percentage. As mentioned previously, ∆f is mostly determined by the imaginary part of 

ZLoad; hence we don’t expect a clear difference in ∆f between the tapes because the 

difference in µ is a very small perturbation. On the other hand, though both RX and XX 
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change with microwave permeability, the variation in RX is measurable for it is the only 

term determining the real part of ZLoad (Eq. 1.2). Since Q is mostly determined by the real 

part of ZLoad, and the tapes have similar k, the variation in RX (due to their different 

permeability) is revealed in the difference in Q, consistent with Fig. 1.6. The larger µ 

translates into a larger RX in the ferromagnetic tape, accounting for the larger drop in Q. 

    As a further test, we measured ∆f and Q versus the probe-sample separation h, at 

frequencies of 4.04, 7.08, and 10.34 GHz. We found an increase in 

)500()10( mfmf µµ ∆−∆  as the frequency increased, and a decrease in 

)10()500( mQmQ µµ − (Fig. 1.7). The increase of )500()10( mfmf µµ ∆−∆ is due to the 

increase of change in the imaginary part of ZLoad as the frequency is increased (Eq. 1.2). 

However, the decrease of )10()500( mQmQ µµ −  is not so easily understood, and may be 

dominated by ferromagnetic resonant (FMR) phenomena in ωωµ )(rxZ ∝ .  
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Fig. 1.7 Distance dependence of the frequency shift and Q factor 
measured at different frequencies. The step-like feature in 4GHz 
measurement is due to the setting of the lock-in amplifiers. It was not 
optimized and gave discrete output. 
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1.2.5 CMR Field Imaging 

To quantitatively evaluate our understanding of the microscope, I examined a single crystal 

of the colossal magneto-resistive material La0.8Sr0.2MnO3 (LSMO) with diameter ~ 2 mm, 

in the vicinity of its ferromagnetic resonance (FMR). The probe used in this measurement 

is made of a non-magnetic coaxial cable with 0.034” outer diameter. The imaging was 

performed at K, just below the Curie temperature 305.5 K. With the probe 

positioned ~ 20 µm above the center of the sample, we measured ∆f and Q as a function of 

the external magnetic field H

005.0500.301 ±

ext (Fig. 1.8), and the probing microwave frequency ~ 6.07 

GHz. The external magnetic field is applied uniformly by placing the sample in the center 

of two 5cm diameter magnet poles, which are 1cm apart. The field direction is parallel to 

the sample surface and the plane of the loop probe (Fig. 1.2). In a separate experiment 

[24,25], the complex surface impedance of this sample was also measured. The FMR 

phenomenon is clearly observed as a minimum in Q(Hext) and a point of maximum slope of 

∆f(Hext) (see Fig. 1.8). 

    We can compare the measured ∆f and Q versus Hext of LSMO with model predictions 

based on the independently measured complex surface impedance and permeability on the 

same sample. In our model, the µr dependence only appears in the surface impedance ZX. 

To test whether or not this model properly describes the experiment, we evaluated the 

transmission line model with the measured ZX. It is known from David Steinhauer’s work 

[19-21] that the decoupler capacitance  (see Fig. 1.2). According to my FCD
1310−≈
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calculation, which is discussed in later chapters,  and 

, and the resonator cable attenuation 

HL 910
0 1010~ −− −

HM 1011 1010~ −− − 2.01.0 << α  nepers/m. However, 

here I treated them as fitting parameters, since none of them were known exactly. I find that 

the full model prediction fits the experimental results very well with , 

, , and 

FCD
131094.2 −×=

HL 10
0 105.6 −×= HM 10103.1 −×= 1967.0=α  nepers/m. The data (open circles) 

and fit (solid line) are shown together in Fig. 1.8. This demonstrates that we have a good 

qualitative understanding and reasonable quantitative understanding of how our microscope 

is sensitive to magnetic permeability. 

    I have also developed a technique to image the spatial variation of FMR resonant field in 

a sample by using either the frequency shift or Q data. In Fig. 1.8, I observe that the field of 

the minimum ∆f (H) correspond to the approximately linear range with the steepest slope of 

Q(Η) (see the vertical line at H1). When the FMR field (the minimum of Q) varies over the 

sample, the frequencies will shift with location. By fixing the homogenous external field at 

the minimal ∆f (or Q) while scanning over the sample, I observe the spatial variation in Q 

(or ∆f) due to the shift of the local FMR resonant field. Using the approximate linear 

relationship ∆f (Hext) at H = H2 or Q(Hext) at H = H1, I can convert the ∆f or Q images to 

the variation of the FMR resonant field. 
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Fig. 1.8 FMR phenomenon observed in the microwave microscope on a LSMO 
single crystal in ∆f(H) and Q(H) measurements at T = 301.5K, f @ 6.035GHz 
using the magnetic loop probe. The open circles are the experimental data, and the 
solid line is the model calculated with parameters and bulk surface impedance 
data discussed in the text. The solid lines are model calculation based on the field 
dependent permeability measured by Andy Schwartz.[24, 25] The vertical lines 
represent the corresponding magnetic fields H1 and H2 at which ∆f(H) and Q(H) 
are minimal. 
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    Figure 1.9 shows ∆f and Q images taken at different fixed external magnetic fields, 

 and OeHH ext 13172 ≅= OeHH ext 14111 ≅= , corresponding to the minima in Q(Hext) 

and ∆f(Hext) measured at the center of the sample simultaneously. The linear relations 

between ∆f/Q and Hext are obtained from Fig. 1.8: kHzOefH
HHext /37.2)(/

2
≈∆∆

=
δ  and 

QOeQH
HHext /25/

1
≈∆∆

=
. While the ∆f and Q images show similar spatial variations, 

from these linear relations, I also find that the maximum variation of the FMR field in both 

images is consistent and approximately . Oe230
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Fig. 1.9 Images of variations in ∆f and Q demonstrating the variation in 
the FMR field. The dashed line is the outline of sample. The images are 
taken at 301.5K, f @ 6.035GHz. The external field is Hext = H2 = 1317 
Oe in a) and Hext =H1 = 1411 Oe in b). Note that for clarity, not all 
contour lines are shown. 
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1.2.6 Conclusions 

Although the quantitative calibration of this system for measuring local permeability hasn’t 

been accomplished, the sensitivity of this microscope to local permeability is demonstrated 

by the significant contrast between ferromagnetic and paramagnetic metallic tapes 

measured by the loop probe. In addition to measuring the local permeability, I extended the 

use of this microscope to measure local FMR resonant fields in an LSMO single crystal. 

Qualitative and quantitative understanding of our permeability and FMR data are 

demonstrated.  

1.3 The Nonlinear Near-Field Microwave Microscope 

1.3.1 Introduction 

Nonlinear AC properties of superconductors are important for understanding the 

fundamental physics of superconductors (discussed later in Chapter 2). In microwave 

measurements, higher harmonics (single-tone input) and intermodulation signals (two-tone 

input with frequencies very close to each other) are usually observed as a consequence of 

the nonlinear properties. The prediction of such harmonics also has important implications 

for applications of superconductors to microwave filters. 

    The advantages of a microwave microscope employing a resonant technique, as 

described in the previous sections, are the great amplification of signals in the resonant 

mode, and the enhanced field intensity at the probe tip. However, the frequency range for 
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utilizing these advantages is limited due to the narrow bandwidth nature of a resonator. To 

measure the nonlinear properties of materials without losing these advantages, one can 

measure the intermodulation distortion (IMD) with two tones, f1 and f2, which are close to 

each other, applied near the resonant frequency of a superconducting resonator. If the 

sample is nonlinear, the strongest IMD signals will be generated at 2f1-f2 and 2f2-f1, which 

are nearby the resonant frequency.  

    Roughly speaking, IMD measurements are equivalent to measuring the third-order 

harmonic generation. However, to measure nonlinear properties which generate second 

order harmonic signals, the IMD technique is not useful, since the corresponding IMD 

signals are far outside the resonant band. Secondly, all resonant techniques using 

superconducting transmission line resonators suffer from the problem of strongly enhanced 

edge screening currents. Since the currents are mostly flowing along the edges of the 

transmission line to prevent magnetic fields from penetrating into the sample, the nonlinear 

responses measured by such techniques are mostly from the edge. The large majority of the 

sample makes essentially no contribution to the measured nonlinear response, and the part 

that does contribute is damaged and not representative of the bulk. 

    To identify different types of local nonlinearities, we want to simultaneously and locally 

measure the second and third harmonic signals in the sample. To do this, we modify the 
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microscope described in the previous section to work in a non-resonant configuration. This 

is essentially a change from configurations (c) to (b) in Fig. 1.1. 

1.3.2 Experimental Setup 

Unlike the magnetic microscope discussed in the previous section, this modified version 

works without the decoupling capacitor, which was used to define a resonator. Therefore, 

this microscope is not working in the resonant mode.  

    In this microscope, as shown in Fig. 1.10, microwave signals (generated by the 

HP83620B Microwave Synthesizer at f @ 6.5 GHz) are sent to the sample directly through 

the probe/sample coupling. Since the microwave synthesizer also generates higher order 

harmonics, we use two low-pass filters (cutoff frequency ~ 8.5GHz) to prevent these 

harmonic signals from entering the sample. We measure the reflected signals from the 

surface, which contain higher order harmonics due to the nonlinear properties on the 

surface. The reflected signals are directed by the directional coupler to the high-pass filters 

(cutoff frequency ~ 12 GHz), amplifiers and spectrum analyzer. Since there is a mixer, 

which is a nonlinear component, in the input of the spectrum analyzer, we would like to 

minimize the signal at the fundamental frequency (~ 6.5 GHz in my experiments) getting 

into the mixer, which could generate higher harmonics. We use two high-pass filters to 

reduce Pf significantly (> 70 dB) without losing signals at the 2f and 3f frequencies. The 
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signals are amplified by ~ 65dB with two microwave amplifiers after being high-pass 

filtered, and then measured by the spectrum analyzer. 

 
Fig. 1.10 Schematic of the nonlinear near-field microwave microscope. 

    Shown in Fig. 1.11 are the pictures of my system. Microwave Electronics, the cryogenic 

chamber, and a picture of the loop probe are shown. 
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Fig. 1.11 Pictures of the microscope. The bottom shows the microwave 
electronics, mechanical vacuum pump, and the temperature controller. 
The upper left is the cryogenic chamber and the turbo pump (not 
shown) is located right beneath the chamber. The upper right is a 
picture of the non-magnetic loop probe that I used in both permeability 
imaging and nonlinear measurements. 
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    The probe of this microscope is similar to the one discussed in the previous section (Fig. 

1.11). It is made of a non-magnetic semi-rigid coaxial cable, with its inner conductor 

forming a semi-circular loop, shorted with the outer conductor. With this arrangement, the 

probe couples to the sample via the magnetic fields generated in the vicinity of the probe, 

and induces currents flowing on the sample surface. This feature is especially important for 

studying the nonlinear electrodynamics in superconductors. We can perturb the 

superconducting state with these locally induced currents, and study the local nonlinear 

response due to any existing nonlinear mechanisms. In addition, the direction of the 

induced currents is determined by the orientation of the loop probe, since the sample is 

approximately modeled as an image loop of the loop probe. Thus, we expect that 

anisotropy in the screening response of cuprate superconductors can also be investigated 

with this microscope. 

    In our expriment, the sample is kept in a high-vacuum cryogenic chamber (Fig. 1.11). 

The pressure can be as low as , and the temperature ranges from 3.5K to 

room temperature. This continuous flow cryostat was designed and built in collaboration 

with the late Eric Swartz of Desert Cryogenics. Both the frequency and power of the input 

signal and the sample temperature are controlled by LabView

Torr87 10~10 −−

® programs via GPIB 

interfaces. 

1.3.3 Principle of Operation 
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The samples that we want to study are superconducting thin films (for reasons explained in 

Chapter 3). To avoid the edge effect, mentioned previously, and to directly examine the 

material properties, we would like to locally apply currents on the surface of the films and 

study their electromagnetic response. I note that this is in contrast to almost all other work 

on intrinsic nonlinearities in superconductors, which generally employ global magnetic 

fields or currents to induce nonlinear response. We apply the currents only locally to the 

film through the coaxial loop probe, which is placed very close to the sample surface (12.5 

µm, spaced by a TeflonTM sheet). When we apply a single-toned sinusoidal microwave 

signal to the film through the probe, a localized microwave current distribution is induced 

on the sample surface beneath the probe. In this way, we are only studying the local sample 

properties, and avoiding the edge current buildup effect, which is encountered in all global 

measurement techniques.  

    If there is any nonlinear mechanism locally present in the sample, the electromagnetic 

response from the sample surface will be modulated, and this couples back to the loop 

probe. The modulation of the electromagnetic response can be divided into two categories: 

one that preserves the time-reversal symmetry, and another one that breaks it. The former 

reflects the presence of nonlinearities which preserve the time-reversal symmetry, and 

appears as higher odd harmonics. What if some nonlinearites break the Time-Reversal 

symmetry? The key signature of such nonlinearties is the presence of spontaneous local 

currents flowing on or in the sample. While such currents are present, the surface 
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electromagnetic responses will not be time-reversal invariant any more, and result in 2f, 4f 

etc, signals. In our measurements, we measure both 2f and 3f signals to address the 

presence of both types of nonlinearities. 
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CHAPTER 2 

INTRODUCTION TO NONLINEAR SUPERCONDUCTIVITY 

Nonlinearities in superconductivity have been of great concern because of both industrial 

applications and the need to elucidate the fundamental physics of high-Tc superconductors. 

There have been great efforts devoted from the industrial side in making passive 

microwave devices, for instance, microwave filters and resonators, with high-Tc 

superconductors. For modest power levels (< 1 W circulating power), the performance of 

such devices is much better than that of conventional devices made from ordinary metals. 

In particular, superconducting filters have extremely sharp filtering bands, excellent 

frequency selectivity, and much lower loss and greater Q.  

    However, as the power is increased, nonlinear behavior becomes a serious issue. For 

example, cellular phone service providers would like to have individual channels as close 

as possible in frequency, so that within a limited bandwidth, one can service more 

customers. To accomplish this goal, microwave band-pass filters with excellent frequency 

selectivity are required. However, if there are two signals very close to each other (at 

frequencies f1 and f2), and the microwave filter is nonlinear, an effect called 

intermodulation distortion occurs. The superconducting films making up the filter generate 
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third and fourth signals at frequencies 2f1-f2 and 2f2-f1, and these signals may be interpreted 

as “ghost” users in the same band. This is the main reason why the nonlinear behavior of 

superconductors can restrict the microwave applications of superconductors.  

    After more than one decade of effort, it is now widely agreed that the nonlinearities 

causing trouble for industrial applications are mainly extrinsic in nature. They are 

dominated by structural defects, for instance, the grain boundaries that can form a weak-

link network and introduce Josephson junction-like nonlinearity.  Another extrinsic source 

of nonlinearity originates in the geometry of the device, which may build up large currents 

at edges and around corners and allow vortices to enter and exit the films. However, while 

all these extrinsic nonlinearities are being explored and discussed, one question remains: 

what are the intrinsic nonlinearities in superconductors?  In other words, what sets the 

ultimate limit of the nonlinear response of a superconductor to external electromagnetic 

disturbances? 

    In this chapter, I discuss the nonlinear Meissner effect, which is an intrinsic nonlinearity 

expected to be present in all superconductors. Different treatments of this fundamental 

nonlinearity are discussed, including the Ginzburg-Landau theory, BCS theory, and a 

representative phenomenological model suggested by an Italian research group. 
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2.1 Nonlinear Meissner Effect 

As mentioned above, the nonlinear Miessner effect (NLME) is a phenomenon expected to 

be present in all superconductors. The qualitative picture of this effect is that the screening 

currents flowing in a superconductor, due to either the presence of external magnetic fields 

or applied currents in the Meissner state, act as pair-breakers, destroying Cooper pairs. This 

screening current, therefore, reduces the super-fluid density and high frequency 

conductivity (σ2) of the superconductor. As a result, the super-fluid density becomes a 

function of the external current or magnetic field. This leads to a number of measurable 

consequences, including field- and current-dependence in the surface impedance, 

penetration depth, and harmonic generation. 

2.1.1 The Ginzburg-Landau Theory 

The NLME can be described by the Ginzburg-Landau (GL) theory. GL theory is a 

phenomenological theory intended to describe superconductivity near Tc, although it often 

works reasonably well at lower temperatures. Superconductivity is described by a complex 

order parameter ψ that is zero above Tc and non-zero below Tc in the equilibrium state. The 

basic postulate of GL theory is that if |ψ| is small and varies slowly in space, the free 

energy density of the superconductor f can be expanded in a series of the form 

    L
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where fn0 is the free energy density in the normal state in the absence of magnetic fields, m* 
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and q* are effective mass and charge of Cooper pairs, A
v

 is the vector potential, H is the 

magnetic field, and ψ is the GL order parameter ( sn=2ψ , the super-fluid density) [26,27]. 

α and β are coefficients in the expansion, and α is positive in the normal state and negative 

in the superconducting state, while β is always positive.  

    The GL theory is capable of dealing with inhomogeneous superconductors. In the 

presence of fields, currents, or gradients of the GL order parameter, )()()( rierr
vvv ϕψψ = will 

adjust itself to minimize the total free energy, which can be calculated by the volume 

integral of Eq. 2.1. By a standard variational method, this leads to the GL differential 

equations 

    0*
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*
* ψϕψ =−∇= . (2.4) 

    From the second term ( ψψ 2 ) and the presence of the vector potential in Eq. 2.2, we can 

conclude that the GL equations are intrinsically nonlinear.  

    Gittleman et al. [28] solve the GL equations for an infinitely wide slab (Fig. 2.1) of s-

wave, type II superconducting thin film with thickness d < λ, and a parallel magnetic field 
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applied on one side. They found that  
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λ , where ψ is the Ginzburg-Landau order parameter, τ = T/Tc, 

|ψ|2 represents the super-fluid density, λ(τ)2=λ0
2(1-τ4)-1 is the temperature-dependent 

penetration depth, and f(τ)=(1-τ2)-2(1-τ4)-1, provided the thermodynamic critical field is 

Hc(τ)=H0(1-τ2). 

 
Fig. 2.1 Schematics of the GL calculation performed by 
Gittleman et. al. 

    Rewriting this equation in terms of a temperature and current density dependent super-

fluid density, we have  
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with 1
)(2

1
2

2

<<
τcJ

J , where J0=H0/λ0 is the zero-temperature de-pairing critical current 

density, and Jc(τ) is the temperature dependent de-pairing critical current density. I note 

that Jc(τ) sets the current scale required to observe the NLME.  

    Equation 2.6 shows a quadratic current-dependent term, which describes the suppression 

of the super-fluid density in the NLME. Since Ginzburg-Landau theory is a 

phenomenological theory that works for temperatures near Tc, this equation is most 

applicable for τ d 1. Hence the asymptotic temperature dependence, (1-τ2)2(1-τ4)~(1-τ)3 as 

τØ1, is most important near Tc. The fitting of the GL theory to my experimental data can 

be found in Chapter 5. 

2.1.2 The Bardeen-Cooper-Schrieffer (BCS) Theory 

A more detailed description of the NLME can be drawn from the Bardeen-Cooper 

Schrieffer (BCS) microscopic theory of superconductivity.  Consider an s-wave 

superconductor in the Meissner state for simplicity.  When a current is flowing in a 

superconductor, represented by a super-fluid velocity vs, the energy of a Cooper pair at the 

forward end of the Fermi surface (along the current direction) is higher than at the back end 

by 

    sfsfsfsf vpvmvvvmvvmE 22)(
2
1)(

2
1 22 ==−−+=∆ ,  (2.7) 

where vf and pf are the Fermi velocity and momentum, m is the effective mass of the 
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Cooper pairs, and vs is the super-fluid velocity. Since quasiparticles are created by thermal 

excitation over the energy gap at finite temperatures in superconductors, and their 

excitation is easier upon going from below the gap on the front end to above the gap on the 

back end, this energy difference leads to an additional quasiparticle current flowing from 

the forward to the back end of the Fermi surface [28]. Therefore, the net screening current 

consists of a forward super-fluid current and a quasiparticle backflow current 

    , (2.8) 

where J

qpstotal JJJ −=

s is the super-fluid current density, and Jqp is the quasiparticle backflow. Xu, Yip 

and Sauls [29,30] calculated the contribution from Jqp for both s-wave and d-wave 

superconductors, whose energy gaps on the Fermi surface are shown in Fig. 2.2. In the low 

temperature limit, Yip and Sauls gave a general expression for calculating the total currents 

flowing in both s- and d-wave superconductors [29]:  
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where N(0) is the density of states of quasiparticles at the Fermi surface, n(Θ) is the angle-

resolved density of states normalized to unity, )(Θfvv  is the angular dependent Fermi 

velocity on the Fermi surface, and ∆(Θ) is the angular dependent gap function. The angle Θ 

is defined in Fig. 2.2. By expanding Eq. 2.9 to leading order in svv , we can re-write Eq. 2.9 
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as ss veJnJ vv
*)(=  and derive the current-dependent super-fluid density . For s-wave 

superconductors, the field (or current) dependence of the penetration depth 

)(Jns

)(1)( JnJ s∝λ  derived from Eq. 2.9 is  

    ,
)(

)()0,(),(
2

0
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≅−

TH
HTaTHT λλ   (2.10) 

for , where a(T) is a coefficient. This leads to the same form as that obtained 

from the GL theory, Eq. 2.6.  

)(0 THH <<

    The situation is different for a d-wave superconductor. Due to the presence of the nodes 

in the Fermi surface of d-wave superconductors, the energy required for quasiparticle 

excitations is extremely small near the nodes. Since the quasiparticles can be thermally 

excited, and the nodes allow quasiparticles to be excited at very low energies, the 

difference becomes very important in the low temperature limit. Yip and Sauls showed that 

the calculation of the field-dependence of the penetration depth for d-wave superconductors 

at T = 0 does not depend on the field quadratically, but linearly on the magnitude of the 

field:  

    
0

0)(
H
HbH ≅− λλ , (2.11) 

where b is a coefficient. 
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Fig. 2.2 Fermi surfaces of s-wave (nodeless) and d-wave 
(node) superconductors (not to scale). 
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    In these equations, H0(T) is of the order of the thermodynamic critical field, a(T) is a 

coefficient which is proportional to  (∆ is the superconducting gap) in the low 

temperature limit and monotonically increases as a function temperature, and b is a 

coefficient of the order of unity for fields parallel to the node direction. However, since the 

superconducting gap function of d-wave superconductors is anisotropic, b is also 

anisotropic and reduced by a factor of 

TkBe /∆−

21  for fields parallel to the anti-node direction. 

This conclusion not only indicates the fundamental difference between the s-wave and d-

wave superconductors in terms of their electromagnetic response to the externally applied 

field/current, but also the coefficient b in d-wave superconductors turns out to be 

anisotropic in the ab-plane. However, it is now believed that Yip and Sauls’ prediction can 

only be observed in very clean crystals, at very low temperatures (reduced temperature << 

10-2), which makes conclusive temperature-dependent measurements of the NLME very 

difficult to carry out experimentally.  

    I give a summary of the electrodynamic responses of the penetration depth λ expected 

from the NLME calculated by Yip and Sauls in Table 2.1. The harmonic generation 

predictions will be discussed in Chapters 5 and 6. 
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Table 2.1 Summary of Yip and Sauls’ [4, 5] predictions 
for the NLME in d-wave and s-wave superconductors 
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    Recently, similar theoretical work done by Dahm and Scalapino predicts that for both s-

wave and d-wave superconductors, the imaginary part of the conductivity, σ2, or 

equivalently the super-fluid density 2
2 )( emns ωωσ= , should retain a quadratic 

dependence on the screening current density as [31,32] 

    
2

2

2 )(1
),0(
),(

),0(
),(
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−≅= Θ

cs

s

j
jTb

T
Tj

Tn
Tjn

σ
σ ,    cjj << , (2.12) 

at temperatures higher than Yip and Sauls’ regime (t > 10-2). Here bΘ(T) is an angle- and 

temperature-dependent function, which is different for s- and d-wave superconductors, and 

Θ is the angle indicated in Fig. 2.2. For s-wave superconductors bΘ(T) is angle-

independent, and monotonically decreases with decreasing temperature, which means that 
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the NLME is weaker at low temperatures. On the other hand, bΘ(T) is expected to rise 

dramatically at low temperatures in d-wave superconductors as shown in Fig. 2.3.  

    This difference in bΘ(T) in the low temperature regime (but not as low as the Yip and 

Sauls’ regime) serves as a clear distinguishing signature of s-wave or d-wave 

superconductors. Additionally, the Dahm and Scalapino theory works in a much wider 

temperature range, so that conclusive experimental measurements are possible. Since d-

wave superconductors have an anisotropic gap in the ab-planes, bΘ(T) is an angle-

dependent function, and is larger for currents flowing along the node-line at lower 

temperatures. It is also worth noting that in the low temperature limit, Dahm and 

Scalapino’s work is consistent with Yip and Sauls’ result [32]. 

 
Fig. 2.3 Calculation of bΘ(T) for s-wave and d-wave (with 
currents flowing in different directions) superconductors 
from Dahm and Scalapino [31]. 
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    Listed in Table 2.2 are some of the signatures of the NLME expected to be observed 

experimentally. The 1st and 4th signatures are discussed in detail in Chapters 5 and 6. The 

2nd and 5th signature are expected to be observed in the low temperature limit. Since the 

sensitivity of my system is not good enough at such low temperatures, I could not test the 

theory in this regime. I provide a more detailed discussion of how to improve the sensitivity 

in Chapter 7. The observation of the 3rd signature requires an angular resolved 

measurement which is not presently available in my system. In principle, further 

modifications can be done to perform such measurements. 

Table 2.1 Summary of expected experimental signatures of the NLME. 

Signature of the NLME Measured Effect 

1. Temperature-Dependent Scaling 
Current Density JNL

Absolute PIMD(T) and P3f(T) measurements 
directly relate to JNL(T) 

2. Temperature Dependence of P3f at 
Low Temperatures 

Expect upturn of NLME coefficient at low 
temperatures 

3. Angular Dependence 2  angular variation of NL response [29] 

4. RF Magnetic Field Dependence Distinguish trapped flux from intrinsic 
effects. Examine the power-dependences of 
the second- and third-order nonlinearities. 

5. Dirt Dependence Impurities should increase field scale H1for 
∆λ ~ H/H1 [33] 

 

2.1.3 Prior Experiments on the Nonlinear Meissner Effect 
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The earliest work on the nonlinear response of superconductors in the Meissner state dates 

back to Pippard [1] (1947), Spiewak [34] (1958), Sharvin and Gantmaker [35] (1961), and 

Gittleman [28] (1965). Their work focused on s-wave, type-I superconductors in high fields 

and temperatures close to Tc. In general, these results were consistent with the simple 

picture for the nonlinear Meissner effect (NLME) discussed above.  A comprehensive 

study of the nonlinear Meissner effect at low fields and lower temperatures in s-wave 

superconductors was done by Sridhar with the surface impedance technique [36].  His 

results showed that the basic NLME predictions were correct, although corrections from 

non-equilibrium effects can be important for type-I superconductors.  Recently, 

measurements of the change in penetration depth of the conventional type-II 

superconductor V3Si showed a quadratic nonlinearity, as expected for an s-wave 

superconductor [37].  The temperature dependence of the prefactor agreed with theory over 

the limited range of the experiment, 0.5 < T/Tc < 0.85.  

    Early work on the non-linear Meissner effect in d-wave superconductors was carried out 

with an rf resonator technique to measure the change in penetration depth with applied dc 

field [38].  Ref. [39] is the first measurement using this technique and the authors claimed 

good qualitative agreement between the data on YBa2Cu3O7 crystals and the Ginzburg-

Landau theory. Maeda, et al., [40] had measurements on Bi2Sr2CaCu2O8, and claimed that 

∆λ(T,H) ~ H2 at high temperatures and ∆λ(T,H) ~ H at lower temperatures, qualitatively in 

agreement with the Yip and Sauls prediction for the NLME in d-wave superconductors.  
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However, the magnitude of the observed nonlinearity was much greater than predicted, the 

linear-in-H behavior persisted to too high a temperature, and considerable hysterisis was 

seen in the λ(H) curves, suggesting that vortex entry and motion into the crystals 

dominated the response.[40]  

    Carrington, et al. [41] carried out sensitive measurements of the change in penetration 

depth of a YBCO crystal as a function of applied dc field. Their results show a linear 

increase in penetration depth at low temperatures, but the magnitude of the effect is smaller 

than that predicted by Yip and Sauls.  Moreover, they did not see the quadratic dependence 

of ∆λ(H) expected at higher temperatures. Similar measurements of the magnetic 

penetration depth nonlinearity in untwinned single crystals of YBa2Cu3O7 at UBC [42] 

show a NLME consistent with the Yip and Sauls prediction for the field dependence at 1.2 

K, but did not show the expected temperature dependence or low-field behavior.[43]  

These measurements also revealed enhanced nonlinearities at higher temperatures, possibly 

due to extrinsic effects.  However, all of these experiments suffer from the use of a globally 

applied magnetic field (as discussed in Section 1.2) to measure the NLME; the edges and 

corners of the sample invite vortices to enter the sample. It is well established that vortex 

entry and motion creates a very strong nonlinear response [44,45]. The UBC group saw 

that the magnitude of their nonlinear penetration depth signal dropped dramatically when 

they polished away the corners of their single crystal sample [42]. 



 

 45 
 
 
 
 

    The apparent absence of a linear-in-H NLME may be explained by the calculations done 

by Li et al. [46], following Kosztin and Leggett [47]. They suggest that the linear-in-H 

NLME may be suppressed by the non-local effects. They also pointed out that the NLME 

might still be visible for currents flowing parallel to the nodal direction. Hence the NLME 

as predicted by Yip and Sauls has not been demonstrated experimentally. 

2.2 Vigni’s model of modulating normal fluid density by external AC fields 

In addition to the NLME in the low temperature limit, in Fig. 2.4, I show a P3f(T) data of 

NbN near Tc ~ 10.5K, which demonstrates the enhanced NLME near Tc. Many empirical 

models exist to explain observation of the NLME near Tc [33,48]. Here we focus on one 

model typical of this genre.  

 
Fig. 2.4 P3f (T) measured on an unpatterned NbN thin film 
near the Tc ~ 10.5K. 
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    A purely empirical model based on the two-fluid model is used by Vigni et al. [48] to 

describe the electromagnetic response of the super-fluid density to external magnetic fields. 

Considering the same basic idea as the NLME, which is that the quasiparticle excitations 

are enhanced due to the presence of external fields and currents, Vigni et al. assume that 

the enhancement of the excitation quasiparticle density is dependent on the absolute value 

of the instantaneous external magnetic field as, 

    )cos()(),( tHTwtTw nn ωγ+= , (2.13) 

where wn is the normalized quasiparticle density, T is the temperature, t represents time, 

and γ is a constant, that serves as a fitting parameter in this model. I note that the |H| 

dependence of wn was chosen to fit their particular data, which shows P3f  ~ Pf
2. This is 

different from our data, and that of many other researchers, which show P3f  ~ Pf
3 near Tc. 

In addition, this model assumes that the super-fluid and quasiparticle densities come to 

equilibrium with the external current/field density instantaneously. This approximation 

may break down as the order parameter relaxation time grows near Tc.  The suppression of 

the super-fluid density is given by, 

    )cos()(),( tHTwtTw ss ωγ−= , (2.14) 

where ws=1-wn is the normalized super-fluid density.  

    By solving Maxwell’s equations for a polarized electromagnetic plane wave propagating 

normal to the surface of an infinite isotropic superconducting slab of thickness D, Vigni et 

al. calculated the induced magnetic field in the superconductor. Since the super-fluid 
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density is suppressed by the field as above, the induced magnetic field is no longer purely 

sinusoidal, and contains higher order harmonic content 

    
( )

4/122
0

)]()([
2/)(cos2

tbtaD
ttHB

+
+

=
ϕωµ , (2.15) 

where B  is the averaged magnetic field in the sample, H is the magnitude of the applied 

field, 

    2

),()(
λ

tTwta s= , 

    2

),(2)(
δ

tTwtb n−= , 

    
)(
)()(tan

ta
tbt =ϕ , 

λ is the London penetration depth, and δ is the normal metal skin depth.  

    By calculating the Fourier components of ‚BÚ at the third harmonic frequency, 

    ∫=
π

ωω
π

2

03 )()3cos(1 tdtBa , (2.16) 

    ∫=
π

ωω
π

2

03 )()3sin(1 tdtBb , (2.17) 

one finds the power of the third harmonic signal becomes 

    . (2.18) 

It is worth noting that a

2
3

2
33 baP f +∝

3 and b3 peak at different temperatures according to this calculation. 

Therefore, phase-sensitive harmonic measurements can be performed to further test this 
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model. 

    It is worth noting that Vigni’s model is claimed to work near Tc with isotropic 

superconductors, or for special configurations (for instance, H(ω) parallel to the c-axis of 

YBCO crystals) in strongly anisotropic superconductors. However, this model is 

significantly different from the GL or BCS theory. The most important difference is the 

power dependence of the third harmonic signal on the magnetic field. While both GL and 

BCS theory predict a power-3 dependence near Tc, this model yields a power-2 dependence 

due to the linear modulation of the super-fluid density by |H(ω)|, which was motivated to 

better fit Vigni’s experimental data. Of course, this model is phenomenological and not 

based on any microscopic theory of superconductivity. 

2.3 Andreev Bound State Nonlinearities 

In addition to the NLME for bulk superconductors, surface states called Andreev bound 

states (ABS) are formed on certain surfaces of d-wave superconductors in the low 

temperature regime. The ABS are also nonlinear in nature. Here we would like to calculate 

their contribution to our harmonic response measurements.  

    Andreev bound states are a result of Andreev reflection at the normal/superconducting 

(N/S) interface of a d-wave superconductor. They only occur where there is a π phase shift 

between different lobes of the dx
2
-y

2 order parameter for a quasiparticle undergoing specular 

reflection at the interface. Consider an N/S interface as in Fig. 2.5 with carriers incident 
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from the normal layer to the superconducting layer at point A. When carriers are Andreev 

reflected from point A, they experience a +∆ order parameter. Then the carriers are 

normally reflected by the N/I interface and Andreev reflected again at point B, where they 

experience a –∆ order parameter. As a result, the quasiparticles in the normal region 

experience a potential well with depth +∆–(–∆), and are bound to this normal region. 

Theoretical works [49] indicate that in the limit where the thickness of the normal region 

approaches zero, this bound state still exists. The energy of the bound state is the Fermi 

energy. Hence a d-wave superconductor with a [110] exposed surface is expected to host an 

Andreev bound state. 

 
Fig. 2.5 Quasiparticles in the normal metal are specularly reflected at 
the N/I interface, and Andreev reflected at the S/N interface. Because 
the superconducting order parameter changes its sign between 
subsequent Andreev reflections, the quasiparticles form a bound state 
in the normal metal. [49] 
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    One signature of the presence of the ABS is a non-zero quasiparticle density of states 

(DOS) at zero energy, which can be detected as a zero-bias conductance peak (ZBCP) in 

the tunneling spectrum through the surface containing the ABS. One implication of this 

signature is that even at very low temperature (kT<<∆), the non-zero DOS of quasiparticles 

can allow a quasiparticle current to flow into this surface state, and this will lead to 

nonlinear behavior of the super-fluid density and London penetration depth. 

    In the absence of impurities, the modification to the low energy quasiparticle DOS of d-

wave superconductors (∂ |E|, measured from the Fermi energy) due to the ABS is 

represented as an additional δ-function, δ(E), in the DOS. Since disorder is inevitable, this 

δ-function in the quasiparticle DOS is expected to be broadened, and becomes finite at 

zero-energy. The surface DOS of normal electrons (the quasiparticles in superconductors) 

can be directly measured via tunneling into the surface and measuring the differential 

conductance, dI/dV, which is proportional to the surface DOS. If the ABS does exist on 

certain surfaces, then the tunneling spectrum (dI/dV vs. biasing voltage) of these surfaces 

should demonstrate a singular peak near zero-bias voltage (the ZBCP), meaning tunneling 

quasiparticle currents are allowed to flow at zero energy, rather than dI/dV=0 for an 

ordinary tunneling spectrum for d-wave superconductors.  

    Various tunneling experiments have been performed to confirm the presence of this 

surface state. L. Greene et al. [50,51,52] and Deutscher et al. [53,54,55,56] performed 
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planar junction tunneling experiments on [110] and other orientation surfaces of YBCO, 

and repeatedly found the zero-bias conductance peak (ZBCP). They did not find a ZBCP 

for tunneling into [001] oriented surfaces. Wei et al. [57] also performed Scanning 

Tunneling Microscopy (STM) experiments onto [001] YBCO surfaces with terrace-like 

features, and claimed to see ZBCP on the terraces, where the [110] surfaces may be 

exposed, but not on the plain areas.  

    However, in addition to seeing the ZBCP, a spontaneous splitting of the ZBCP at zero 

magnetic field is also observed on some occasions. This splitting is commonly understood 

as resulting from the presence of a so-far-uncertain time-reversal-symmetry breaking 

(TRSB) mechanism.  

    According to Deutscher et al., who examineed YBCO films with different doping levels, 

from slightly under-doped to slightly over-doped, only in over-doped YBCO films is the 

splitting observed. They claim that there is a critical doping level for the TRSB mechanism 

to emerge.  

    On the other hand, L. Greene et al. focused on optimally doped YBCO films, and 

observed spontaneous splitting only under certain conditions. They attribute the difference 

to the details of the tunnel-junctions. Though both Greene et al. and Deutscher et al. 

observed the spontaneous ZBCP splitting at temperatures just below 10K, there are 

significant differences between their results. In Deutscher’s work, even when the ZBCP 
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doesn’t show a spontaneous splitting, the splitting can be induced by external magnetic 

fields. On the other hand, in Greene’s work, the ZBCP splits in an applied magnetic field 

only if the spontaneous splitting is observed. If the spontaneous splitting is not observed, 

the ZBCP is only broadened, not split, by applying external fields.  

    Theoretical work has not yet resolved the controversy. Greene et al. claimed that their 

results are consistent with the model of a sub-dominant order parameter with a π/2 phase 

difference from the dominant d-wave order parameter in the ABS. The idea is that, since 

the de-pairing mechanism for the d-wave order parameter is so strong in this surface state, 

the existence of this sub-dominant interaction gives the quasiparticle in the ABS an 

alternative pairing-interaction for forming Cooper pairs. It is the π/2 phase difference 

between the dominant and sub-dominant order parameters (d+is) that leads to a 

spontaneous flowing surface current [58]. However, this model doesn’t imply any doping 

dependence of TRSB in the ABS, and neither do other models to my knowledge. 

    It is also believed that a TRSB surface state will break into domains.[59] This will insure 

that no bulk spontaneous surface current will be created, but that small circulating currents 

will exist on the length scale of the domain size. Because of this, one does not expect to 

detect the TRSB signal from a macroscopic measurement (such as magnetization). 

However, the near-field microwave microscope creates RF currents on a variety of length 

scales (all shorter than the free-space wavelength), determined by the geometry of the near-

field probe. Hence our microscope can be sensitive to the local TRSB domains as long as 
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the probe creates significant current components on spatial frequency scales comparable to, 

or smaller than, the TRSB domain size. 

    Another sign of the ABS is an upturn of the London penetration depth at temperatures 

lower than cT00 λξ , where ξ0 and λ0 are the zero temperature coherence length and 

London penetration depth.[60] For HTSC, ξ0/λ0 is on the order of 10-2; hence the upturn of 

the penetration depth should be observed for T § 0.1Tc. To understand this upturn of the 

penetration depth, we start with the formulation of the temperature dependent penetration 

depth for d-wave superconductors.  

    At low temperature, the increase of λ due to the thermal excitations of quasiparticles 

is[61]  

    ∫
∞

∞− ∂
∂

−=
∆ dE

E
f

N
ENT

)0(
)()(

0λ
λ , (2.19) 

where f is the Fermi function )1(1)( / += TkE BeEf , λ0 is the zero temperature penetration 

depth, and N(E) is the d-wave DOS ∂ |E| (E is measured relative to the Fermi energy), 

which leads to 
cT

TaT
=

∆

0

)(
λ
λ . This is the famous linear-in-T penetration depth temperature 

dependence, first observed in YBCO crystals by the UBC group [62] and later by our group 

[63].  Here, a is a coefficient of the order of unity. Its value depends on the shape of the 

Fermi surface and the angular slope of the gap function near the nodes. For a 2D dx
2
-y
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tetragonal superconductor with a cylindrical Fermi surface and order parameter 

∆(φ)=∆0cos(2φ-2θ+π/2), where θ is the angle that the normal vector of the exposed surface 

of the superconductor makes with the [110] direction, a is around 0.32[60]. 

    The above picture gets modified because the ABS adds a δ-function, δ (E), to the DOS in 

Eq. 2.19. Ultimately this leads to an additional term to ∆λ that scales as 1/T: 
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where [ ]0
33 6)(sin)(cos λθθβ Bf kv −= h . The ABS thus contributes a small 

paramagnetic Meissner effect at low fields.  

    In the presence of a DC magnetic field in the Meissner state, the δ-function is modified 

by the shift in the quasiparticle spectrum due to the Doppler shift, and becomes 

, which leads to  
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showing that the 1/T term of λ is suppressed by the externally applied field. A characteristic 

field scale is introduced here: )(00 cfB TTHveTk =λµ , where H0 is of the order of 

thermodynamic critical field λξµ 00 Φ=cH . The 1/T upturn in the penetration depth, and 
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its suppression due to the external DC magnetic field have been clearly observed by 

Carrington et al. in measurements of λ(T,H) on YBCO crystals with exposed [110] 

surfaces. 

    To explore the possibility of using our microscope to study this type of nonlinearity, I 

rewrite Eq. 2.21 in the perturbation limit ( 1
2

0 <<
⋅

Tk
vHe

B

f
vv

λµ
). The contribution of ABS can 

be expressed as 
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assuming . This is the change in λ due to the destruction of the ABS by an 

applied field H at low temperatures. It demonstrates a similar time-reversal symmetric 

(TRS) third order nonlinearity as seen in the NLME, although it has a very different 

temperature dependent pattern.  

ff HvvH =⋅ v
v

    To express this ABS nonlinearity in the same manner as for NLME, I rewrite the 

equation as follows, 
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which indicates a scaling field or current density, which scales with temperatures as     

( ) ( ) ( ) ( )ccNL TaTTTTHTH ββ /2/22/1/2)( 2
0 ++= .  (2.24) 

Measurement of this nonlinearity field/current scale can serve as the sign of the presence of 

Andreev bound states if observed by our near-field microwave microscope. I note that the 

d-wave NLME is not included in this expression. 

    It is also worth noting that in Barash’s framework [60] of another TRSB order 

parameter, which is the surface magnetization, emerges in the ABS at temperatures below 

( ) cc TT 01.000 ≈λξ . This order parameter modifies the penetration depth as 

3/2)( −∝∆ HH λλ . However, the temperature range required to explore this effect is 

beyond my current capabilities. 

2.4 Another Potential TRSB Nonlinearity – Varma’s proposal 

The above ABS nonlinearities do not have any doping dependence. In contrast, Varma et 

al. [64] proposed a nonlinear mechanism present only in under-doped cuprates, not over-

doped ones. In this model, Varma defines a quantum critical point in the HTSC phase 

diagram, and proposes the presence of 2D micro currents flowing along Cu-O co-valence 

bonds in the Cu-O plane (ab-plane) in HTSC for doping levels below the critical point. 

These currents are arranged so that there is no net flux observable in the global sense, but 

microscopically, time-reversal symmetry is broken. The onset of these currents is marked 

by the pseudo-gap temperature, which varies from ~100K to > 300K for YBCO, and they 
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persist to zero temperature. In other words, with doping levels below the critical point 

(which occurs approximately at optimal doping), the time-reversal symmetry is broken at 

temperatures below the pseudo-gap temperature, even in the superconducting state. 

According to Varma, such a broken symmetry should not be seen in over-doped HTSC.  

    To test this model, Varma also proposed an experiment to be done by Angular Resolved 

Photo Emission Spectroscopy (ARPES). Details can be found in Ref. [64] and [65]. Briefly 

speaking, the onset of the proposed TRSB mechanism is probed with ARPES using 

circularly (left and right) polarized light. Varma proposed a sophisticated ARPES 

arrangement, in which if the response measured from the HTSC sample with the left- and 

right-polarized light shows a difference, the time-reversal symmetry is broken. 

    Experiments done by Kaminski et al. based on Varma’s idea claimed to support this 

proposal. However, another ARPES group, Borisenko et al. [66], following the same idea, 

but concluded that the proposed TRSB mechanism is not observed. While this is still a 

controversial issue, we believe that our microscope has promising potential to provide an 

independent way to test if this proposal is valid.[67] 
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CHAPTER 3 

THE NONLINEAR SCALING CURRENT DENSITIES 

As I mentioned in the previous chapter, nonlinearities in superconductors, especially high-

Tc superconductors, are of interest not only because of their implication for applications, 

but also because they give insights into the physics of these mysterious materials. However, 

it has been recognized that most of the work striving to find the most intrinsic nonlinear 

mechanisms in High-Temperature Superconductors (HTSC) has to face the much stronger 

nonlinear mechanisms caused by extrinsic features of the samples. For instance, the 

granular nature and inhomogeneity of the HTSC’s lead to strong nonlinearities. Therefore, 

it becomes imperative to positively identify the cause of the observed nonlinear 

phenomena.  

    In the mid 1990’s, Dahm and Scalapino [31] proposed an expression for the Nonlinear 

Meissner Effect (NLME) in terms of a scaling current density, JNL, which is the de-pairing 

current density of the HTSC.  
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    This concept was later extended and used by various researchers [68,69] to identify the 



 

 59 
 
 
 
 

dominant mechanism in their nonlinear measurements of HTSC’s. It turns out to be very 

useful because this scaling current density should be measurement technique-independent, 

and provide a common ground for researchers to compare results obtained from various 

experimental approaches. In 2001, James C. Booth [69] used an algorithm to convert the 

results of his harmonic measurements into the scaling current density in Eq. 3.1. We have 

found that this algorithm can be applied to our experiment with some slight modifications. 

The details will be described in this chapter.  

    I note, however, that Booth’s algorithm is only applicable in the superconducting state 

since the dominant nonlinear behavior is assumed to be inductive. This assumption is only 

true in the superconducting state for two reasons. First, there is very little energy dissipated, 

hence the resistive nonlinearity is not important. Secondly, most of the energy is stored in 

the kinetic energy of the current density, and its nonlinearity is dominated by that of the 

kinetic inductance and the super-fluid density. At temperatures above Tc, materials become 

very dissipative. Although there might be residual σ2 for  allowing super-current 

screening to exist in the sample, the electrodynamics are no longer dominated by the 

inductive response, but must include the dissipative channel. Therefore, for nonlinearities 

proposed to be present in the normal state or the pseudo-gap state, for example, Varma’s 

micro current model, this algorithm may not be sufficient. Another algorithm treating the 

nonlinear resistance as an additional source is needed. In my research, I focus on the 

nonlinear phenomena observed in the superconducting state. 

cTT >
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3.1 Time-Reversal Symmetric (TRS) Nonlinearities 

3.1.1 Introduction 

Nonlinearities in high-Tc superconductors generally result from the perturbation and 

suppression of the super-fluid density, so that the electromagnetic response of the 

superconductor is no longer linear. The simplest way of expressing the effect of various 

nonlinearities in superconductors is to expand the perturbed quantity, i.e. the super-fluid 

density, in terms of the perturbing quantity, i.e. external currents or fields.  

    For the Time-Reversal Symmetric (TRS) nonlinearities, the super-fluid density is written 

as  

( ) L+−≅ 2)(1)0,(),( TJJTJT NLss ρρ ,  

where sρ  is the super-fluid density, and ( )2)(TJJ NL  is the leading perturbing term, which 

preserves the Time-Reversal Symmetry. I justified this general approach on microscopic 

grounds in Chapter 2. It is worth noting that since I am treating the nonlinearities as a 

perturbation to the super-fluid density by external currents, J must be much smaller than 

JNL to validate the truncation of the expansion. Further analysis shows that JNL(T), which 

serves as a scaling current density, is of the order of the critical current of the responsible 

nonlinear mechanism [29-32].  
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    As an example, consider the nonlinear Meissner effect. In this case, JNL(T) is the de-

pairing critical current density of the superconductor. This JNL º 109 A/cm2 for cuprates, 

and 107 A/cm2 for low-Tc superconductors, for 0.3Tc < T < 0.7Tc. However, at lower 

temperatures, this quantity behaves differently in s- and d-wave superconductors (see Fig. 

3.1). While JNL(T) increases as  in s-wave superconductors, it decreases in d-wave 

superconductors due to the presence of the nodes in the energy gap on the Fermi surface, as 

discussed in Chapter 2.  

0→T

    The Ginzburg-Landau (GL) theory can also be used to estimate JNL(T) for the NLME. 

While the magnitude of this estimate might be trustworthy, it only gives a reliable 

description near Tc. On the other hand, for a 1D Josephson junction array combined in 

series, Willemsen [68] found that JNL is around 105-106 A/cm2 for 0.3Tc < T < 0.7Tc (See 

Fig. 3.1). These different predictions mean that if one can extract JNL(T) from experimental 

results, the nonlinear mechanism responsible for the observed behavior can be identified. 



 

 62 
 
 
 
 

 
Fig. 3.1 Schematic representation of the expected JNL(T) 
for various nonlinear mechanisms in HTSC. Weak-link 
model is described in Ref. [68]. 

3.1.2 Algorithm for Extracting JNL from Experimental Data 

The measured quantities in my experiment are the harmonics generated from the sample 

when I apply a microwave current at frequency ω = 2πf. To proceed, I must find a way to 

relate JNL to my experimental harmonic data. To do this, I adopt Booth’s algorithm [69]. 

The essential assumption is that the nonlinear reactance of a superconductor dominates its 

nonlinear electromagnetic response. This assumption was later confirmed by Booth’s 

experimental work [70], and that of other groups.  

    Following this algorithm, the nonlinear reactance (due to a nonlinear inductance in our 

case) of the superconductor can be calculated through the energy stored in the inductance: 
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where l is the inductance per unit length, λ is the penetration depth, J is the current density, 

and  is an element of cross-sectional area. The cross-sectional integral is on the surface 

indicated in Fig. 3.2. The integral in the denominator is the total current flowing through 

the cross section. The first term in the numerator leads to the field (geometrical) inductance 

of the superconductor and is determined by the magnetic field configuration in the 

superconductor due to the Meissner screening. This inductance is not changed significantly 

by nonlinearities in superconductors [

sdv

71]. However, the second term is the kinetic 

inductance of the superconductor and it is determined by the current distribution and the 

penetration depth (super-fluid density).  We can write: 
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Fig. 3.2 The inductance per unit length of a 
superconducting slab is estimated by integrals over the 
cross section perpendicular to the current direction. 
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    To obtain the total inductance of the superconductor, we integrate l, the inductance per 

unit length, over the y-direction. For J << JNL(T), the total inductance is written as 
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where is the total current flowing through a cross section right 

beneath the bottom of the loop probe, L
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0 is the linear inductance, and ∆L is the coefficient 

of the current-dependent inductance: 
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    All of this assumes that the penetration depth λ and the scaling current density JNL are 

both uniform over the cross-section integration. I have also used the simplified notation 

λ(T) = λ(T,J=0) in the above equations.  
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    In my experiment, I drive the superconducting sample with an induced microwave 

current, and measure the harmonic content in the potential difference. Using a simple AC 

circuit model with a driving current source )()( 0 tSinItI ω= , at frequency πω 2=f , I can 

model the potential difference generated in the superconducting sample as 

    
dt

tdIIL
dt

tdIL
dt

tdILtV )()()()()( 2
0 ∆+== .  (3.5) 

From this results, we find the third harmonic content is )3(
4

)()(
3

0
3 tCosILtV f ω

ω ∆
−=  (see 

Appendix A). I note that there is a 2π  phase shift in the harmonic content ( ). 

This is because of the assumed dominant inductive response of the sample. If the nonlinear 

response is dominated by the resistive channel, then no phase shift is expected. This 

suggests that the measurement of relative phase between the driving signal and the 

harmonic response will give the relative contribution of the inductive and resistive 

nonlinearities. This would be a different measurement but may be pursued in the future. 

CosSin →

    I measure V3f by monitoring the third harmonic power P3f using a coaxial transmission 

line system. Assuming for the moment that all of the signal generated in the sample couples 

back to the transmission line, I can then write 
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where Z0 is the characteristic impedance of the transmission line and the matched spectrum 

analyzer input impedance. 

    The above equation can be simplified if the thickness of samples are less than their 

penetration depth. The current can then be treated as uniformly distributed in thickness, and 

the integrals of the current density J can be rewritten as integrals of the surface current 

density K: 
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where t is the film thickness, and K is the surface current density. With this simplification, 

Eq. 3.6 becomes  
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    I note that Γ serves as a figure of merit for the sensitivity of my system in measuring 

TRS nonlinearities. I estimate Γ using High-Frequency-Structure-Simulator (HFSS) 

software by Ansoft, which will be discussed later. The figure of merit Γ depends on the 
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power level and the geometry of the probe-sample coupling (the probe size and 

probe/sample distance). A larger value of Γ means that a greater amount of third harmonic 

power (P3f) is measured for a given nonlinear source (JNL). Hence we want Γ to be as large 

as possible.  

    Equation 3.8 implies that sensitivity to nonlinearities will be improved by reducing the 

film thickness t, increasing the frequency ω, increasing the current density K, approaching 

closer to Tc (where λ(T)/JNL(T) is large), and by decreasing the volume in which the current 

flows. It is worth mentioning that an independent calculation done by Pestov et al. [72] for 

this situation demonstrates the same relations between P3f, JNL, the film thickness t, and the 

penetration depth λ. Additionally, he also shows that P3f ∂ 1/h6, where h is the 

probe/sample distance. Thus we expect that the microscope is more sensitive when the 

probe is closer to the sample, which is included in my Eq. 3.8b for Γ. 

    I’m also aware of an independent work by C. Collado, J. Mateu, and J. M. O’Callaghan. 

[73,74] They calculated the expected the intermodulation distortion and third harmonic 

generation from superconducting films in certain patterned geometries, based on Eq. 2.12.  

3.2 Time-Reversal Symmetry-Breaking (TRSB) Nonlinearites 

3.2.1 Introduction 
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A similar analysis can be made for the TRSB nonlinearities. Once again I assume the 

inductive response dominates the nonlinear behavior of TRSB mechanisms in 

superconductors. As long as the TRSB nonlinearities manifest themselves in a way that 

only slightly modifies the super-fluid density, the super-fluid density can be written as 
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where this is valid only for )('),( TJTJJ NLNL<< , where  is the leading 

perturbing term, which breaks Time-Reversal Symmetry, and  is a new scaling 

current density, introduced to quantify the mechanism responsible for TRSB nonlinearities.  

)('/ TJJ NL

)(' TJ NL

    While  represents the strength of various TRSB nonlinearities quantitatively, the 

theoretical foundation is not available for relating the magnitude of  to any 

proposed TRSB mechanisms. Our intuitive thought is that the NLME is modified due to 

the presence of spontaneous currents J

)(' TJ NL

)(' TJ NL

TRSB(T) from the TRSB mechanisms. This suggests 

that instead of , the nonlinear term becomes 
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    Comparing Eq. 3.9 and 3.10, one sees that the  in Eq. 3.9 is replaced by )(' TJ NL

[ )(2)()( TJTJTJ TRSBNLNL ] in Eq. 3.10. One might expect that  because 

the TRSB mechanisms are likely to produce a spontaneous current that is lower than the 

)()(' TJTJ NLNL >
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de-pairing critical current, i.e. )()(2 TJTJ NLTRSB < . This is confirmed in our data discussed 

in Chapter 6.  

3.2.2 Algorithm for Extracting JNL’ from Experimental Data 

To extract JNL’ from my data, I used essentially the same algorithm as for TRS 

nonlinearities. Now since the modulation of super-fluid is represented by two nonlinear 

terms, the calculation for the nonlinear inductance becomes, 
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where this is valid only for 

,)()'( 2
000 ILILL ∆+∆+≡

)('),( TJTJJ NLNL< , and where 'L∆  is the term related to 

TRSB nonlinearities. Using the same AC circuit model, and this additional nonlinear term 

in the inductance, the potential difference now contains not only the third, but also the 

second harmonic content, )2(
2

)'()(
2

0
2 tSinILtV f ω

ω ∆
= , obtained by Fourier 

Transformation (see Appendix A for details). 

    Consequently, if all signals couple back to the transmission line, the second harmonic 

power in the microwave circuit (without attenuation and amplification) is 
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    I note that Γ’ serves as a figure of merit for the sensitivity of my system to measuring 

TRSB nonlinearities. I also use the HFSS software to estimate Γ’, as discussed later. Again 

I want Γ’ to be as large as possible to maximize the measured P2f for a given TRSB 

nonlinear source (JNL’). 

    Equation 3.12 for P2f suggests that I should use thinner films, higher frequencies, larger 

current density K, temperatures closer to Tc, and concentrating currents in a smaller volume 

(smaller probes as we shall see below). These are the same limits I noted above for 

maximizing the sensitivity to JNL in P3f. 

3.3 Predicted harmonics and measured harmonics: coupling and 
amplification issues 

The harmonic signals generated by a sample have been evaluated above. However, before 

this signal is measured, it must couple from the sample to the probe. It then gets attenuated 
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in the coaxial transmission line and filters, and amplified by the microwave amplifiers. To 

estimate the relation between harmonics in the sample, and the measured harmonic data, 

we must characterize our transmission line system. 

    When microwave signals are sent to the sample, microwave currents are induced on the 

sample surface. It is important to know the magnitudes and distribution of these currents, so 

that we can determine what will be generated by the sample. On the other hand, before the 

signal enters the spectrum analyzer, it is picked up via the coupling between the loop probe 

and sample. I use an analytical model calculated with Mathematica™, and a numerical 

model simulated by HFSS, to estimate the microwave current distribution and the 

probe/sample magnetic coupling, and derive other quantities needed to analyze our data. 

3.3.1 Analytical Model of Loop/Sample Interactions Calculated by Mathematica™ 

My model consists of an ideal circular loop carrying a current I, situated above a perfectly 

conducting plane with the loop axis parallel to the plane, as shown in Fig. 3.3. 
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Fig. 3.3 Ideal circular loops represent the physical loop and 
a perfect conducting plane (image loop). 

    Using the method of images, the perfectly conducting plane can be replaced with another 

ideal circular loop, identical to the original one, and carrying currents flowing in the same 

direction (both clockwise or counter-clockwise) to satisfy the boundary condition that there 

are only tangential magnetic fields on the surface. In our work, different loop probes are 

made of different coaxial cables, which have different wire-thickness and outer diameters; 

hence forming different loop sizes. The ideal loops are assumed to be located at the center 

of the inner-conducting wire, as indicated in Fig. 3.3, and the distance between the ideal 

loops and the perfect conducting plane is restricted by the wire-thickness d.  Listed in Table 

3.1 is a summary of the probes that I analyzed with help of Greg Ruchti using HFSS 
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software. Additionally, in my experiment, the bottom of the wire loop is 12.5µm away from 

the sample surface, separated by a TeflonTM sheet, so that the bottom of the ideal loop,  

Table 3.1 Important dimensions of simulated coaxial cables.  
* These coaxial cables are not commercially available. 

Coaxial Cable  
outer conductor – 

outer diameter (inch) 

 
Wire Thickness d (µm)

 
Radius of the Ideal Loop 

(µm) 

.085 500 665 

.034 200 270 

.020 130 172.5 

.010* 65 86.25 

.005* 32.5 43.125 

 

where the current is flowing, is (d/2)+12.5µm away from the plane. We can use this model 

to calculate analytically the current distribution (and therefore the figures of merit, Γ and 

Γ’), and loop/sample mutual inductance. These results will be summarized later along with 

numerical results obtained from HFSS. 

3.3.2 Numerical Simulation using the High Frequency Structure Simulator (HFSS) 

The numerical model simulated by HFSS were done in collaboration with undergraduates 

Greg Ruchti and Mark Pollak. This model consists of a coaxial cable with the inner 
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conductor forming a semi-circular loop to the outer conductor at the end of the cable. The 

bottom of the loop is 12.5 µm above an infinite perfectly conducting plane. The presence of 

the Teflon™ sheet is ignored in this setup (see Fig. 3.4). A driving port is placed at the top 

of the coaxial loop probe, and I apply a 1W microwave signal at 6.5 GHz. The coaxial 

cable and sample are placed in a box, whose walls are defined to be radiation-absorbing 

boundaries. This means that electromagnetic waves don’t return once they propagate to the 

boundaries. The size of the box was systematically increased until the amount of radiated 

power through its walls no longer changed.  

    The HFSS program solves Maxwell’s equations at finite frequencies subject to the 

constitutive relations of the materials, and returns the electric and magnetic field 

configurations in all space and on all surfaces, and the current distributions on all surfaces. 

It also has a built-in calculator capable of performing most mathematical manipulations 

(e.g. cross products, dot products, surface integrals, volume integrals, etc.) on these 

quantities. In particular, HFSS can calculate all electromagnetic quantities in this setup, 

including the spatial distribution of the microwave electric and magnetic fields, surface 

currents flowing on all surfaces, etc. A more detailed description of HFSS simulations can 

be found in Greg Ruchti’s senior thesis [75]. 
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Fig. 3.4 Setup in HFSS to simulate the probe/sample interaction. 

3.3.3 Estimations of the Figures of Merit: Γ and Γ’ 

As described in the previous sections, the figures of merit for third and second harmonic 

measurements, Γ and Γ’, are defined by: 
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where I0 is the total current,  is the total current flowing through the cross section, 

and K is the surface current. Since  might vary along the y-direction, we choose the 

maximum of , which is beneath the center of the loop, to determine I

∫ dxK y

∫ dxK y

∫ dxK y 0.  

    Using the two-identical-ideal-loop analytical model, the surface currents on the plane in 

the middle of two loops can be easily calculated from the magnetic fields H, and the 

boundary conditions that there are only in-plane magnetic fields on the surface. The current 

distribution is used to calculate Γ and Γ’, and the results are tabulated in Table 3.2. 

    On the other hand, the HFSS software can also directly calculate the surface currents K 

flowing on the perfectly conducting plane. The results of HFSS simulations for the surface 

current density on the sample show a clear circulating current pattern as shown in Fig. 3.5. 

To properly calculate the total current, the line integrals  are performed to the points 

where the current is about to turn from forward to backward (See the Integration Line in 

Fig. 3.5). The other integrals in Eq. 3.13 and 3.14 are done with the calculator in HFSS. It 

is noted that in HFSS, the driving power is fixed at 1W, and the figures of merit Γ and Γ’ 

are power dependent quantities. Therefore, to calculate the Γ and Γ’ at the power used in 

my experiment, we use the scaling relation 

∫ dxK y

PK ∝ . The simulated results of Γ and Γ’ 

from both analytical and numerical models are summarized in Table 3.2, and are discussed 

later. 



 

 77 
 
 
 
 

 
Fig. 3.5 Microwave current distribution |K| (A/m) induced on a perfectly 
conducting plane by a 0.034” loop probe. Inset is a vector plot of the 
surface currents, which show a circular circulation pattern mentioned in the 
text. 
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3.3.4 Estimations of the Probe/Sample Coupling 

Assuming the self inductance of the loop probe is L, and the mutual inductance between the 

loop and sample is M, the voltage signal propagates from the sample to the probe with 

reduction by a factor of M/L, and the power signal by (M/L)2. To estimate the probe/sample 

coupling, we use both the analytical and numerical models to calculate this ratio. 

    In the analytical model, the mutual inductance between loop 1 & 2 in Fig. 3.3 can be 

calculated exactly using the well-known result [76]: 

    ∫ ∫ +−
⋅

=
Rxx

ldldM vvv

vv

21

210

4π
µ , (3.15) 

where 1ld
v

, 2ld
v

, , , and 1xv 2xv R
v

 are indicated as in Fig 3.6. 

 
Fig. 3.6 The configuration of two circular loops for 
calculating the mutual inductance by Eq. 3.15. 

    While Eq. 3.15 is a general expression for two loops with arbitrary shapes and 

orientations, we can derive an analytical expression for the configuration shown in Fig. 3.6:  
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where r is the radius of the loops, R is the distance between the centers of the loops, and θ1 

and θ2 are as specified in Fig. 3.6. 

    The self-inductance of the loop Lloop is approximately aLloop 025.1 µ≈  [23], where a is 

the inner diameter of the loop. The results for M and Lloop are given in Table 3.2. 

    The calculation of M/Lloop in HFSS, is a little bit more complicated. As with the 

analytical model, we use an image loop to represent the sample, as shown in Fig 3.7. The 

driving port is on the coaxial cable supporting the original loop, sending microwave signals 

at 6.5 GHz with 1W of input power. 
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Fig. 3.7 Setup for estimating the coupling coefficient M/Lloop 
using HFSS. Red arrows in the inset show different ways of 
measuring V1 and V2 (measured at the ends of arrows), which 
result in slightly different M/Lloop. 

    The image loop acts as a pick-up loop, and the coupling between two loops, M/L, is 

represented by the ratio of the potential differences in each loop, 

    
1

2

V
V

L
M

= , (3.16) 

where V2 and V1 are the potential differences between the inner and outer conductors of the 

image loop and original loop, respectively. To measure V2 and V1, measure-points are put 

on the inner and outer conductors, and HFSS calculates the potential difference between 
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these two points. However, we found that V2 and V1 vary somewhat depending on the 

locations of these points (indicated in the inset of Fig. 3.7). We thus find a range of values 

for M/L for each probe. We have seen this effect on numerous occasions with HFSS and 

attribute it to the finite-element mesh that is used to discretely solve Maxwell’s equations. 

    The results of M/L calculated from the analytical model and HFSS are summarized in 

Table 3.2. It is noted that the analytical results show M/L decreases for smaller loop probes, 

while the results from HFSS don’t change much with loop dimension. To understand this 

difference, we must consider the difference between the real probe/sample arrangement and 

the setup in the analytical model. In reality, the probe and the sample are separated by a 

12.5µm thick Teflon™ sheet, and the loop wire has finite thickness d. Since the ideal 

circular loop is placed at the center of the loop wire, the closest distance between these two 

loops is )2/5.12(2 dm +µ . While it is true that when the probe size gets smaller, the wire 

thickness also gets smaller, the closest distance between these two loops is never less than 

25µm. Therefore, as the probe gets smaller, the two loops in the analytical model get 

farther away in a relative sense; hence the weaker coupling. On the other hand, in HFSS, 

there is always a significant part of the current flowing on the bottom of the wire, which is 

always 25µm apart from its image currents. This helps to maintain the coupling within a 

certain range. This difference will also affect the calculation for Γ and Γ’. In HFSS, the 

total induced surface current does not change much among the various sizes of probes due 

to the more-or-less constant coupling, which is not true in the analytical model. Therefore, 
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to make a relevant comparison between Γ and Γ’ calculated from the analytical model and 

HFSS, the surface currents calculated by the analytical model are multiplied by a factor to 

maintain a constant total current for all probes. Table 3.2 and Fig. 3.8 show the trends for Γ 

and Γ’ with the radius of the ideal loop probe. The comparison shows a pretty good 

agreement in the trend toward larger Γ and Γ’ for smaller probes, though the details are 

different. 

Table 3.2 Simulated figures of merit (Γ and Γ’) and coupling coefficient (M/L) 
by analytical (Mathematica™) and HFSS models for different probe sizes. 

Γ at 1W (A3/m2) Γ’ at 1W (A2/m) M/Lloop (%)  
Outer 

conductor 
Outer 

Diameter 
(inch) 

 
Analytical 

 
HFSS 

 
Analytical 

 
HFSS 

 
Analytical 

 
HFSS 

Kmax 
(A/m)
Input:
1W 

HFSS 

.085 2200 9800 16.7 62.8 3.35 2.8 - 3.7 300 

.034 10400 31200 34.8 106.4 3.12 3.13 ~ 
3.67 

500 

.020 23300 37900 52.1 99.7 2.89 2.6 ~ 3.8 800 

.010 66100 52100 85.2 95.3 2.40 – – 

.005 161300 166200 129.3 231.3 1.72 – – 
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Fig. 3.8 Plot of Γ and Γ’ calculated by both the analytical model 
and HFSS for various probes. Both assume 1W input power. 

3.3.5 Estimations of Attenuation and Amplification in the Microwave Circuit 

The final step to relate our measured harmonic powers to the nonlinearity current density 

scales is to characterize the attenuation (or gain) of our microwave measurement system. 

The microwave signals sent from the synthesizer are attenuated by the coaxial cable, low-

pass filters, and directional coupler before reaching the loop probe (see Fig. 1.10). This part 

of the circuit was characterized by using an Agilent 8722D vector network analyzer 

through calibrated measurements of  S21 in a two-port measurement. I found that the drive 

signals around 6.5 GHz (f) are attenuated by ~ –2 dB while traveling from the source to the 

probe. Then the signals are reduced by the probe/sample coupling as discussed previously 

before entering the sample. After the harmonic signals generated on the sample surface are 

picked up by the loop probe, they propagate along the transmission line through a 

directional coupler, through two high-pass filters, and two amplifiers, and are then 
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measured by the spectrum analyzer. I characterized the circuit at 13 GHz (2f) and 19.5 GHz 

(3f), where I found the total gain of ~ 60 dB, and ~ 52 dB, respectively.  

    Considering both the reduction due to the coupling, and the enhancement from the 

measurement system, the locally generated second and third harmonic signals are enhanced 

(compared to the signals generated in the sample) by ~ (3%)2µ106=900 times and ~ 

(3%)2µ105.2@142.6 times when they are measured by the spectrum analyzer at 13 GHz (2f) 

and 19.5 GHz (3f), respectively. This conversion is used to estimate the power level of the 

harmonics generated in the sample. Using Eqs. 3.8 and 3.12, and the calculated results for 

Γ and Γ’, we can estimate JNL and JNL’, respectively. This will be further discussed in 

Chapter 5. 
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CHAPTER 4 

MICROWAVE NONLINEARITIES OF THE YBCO BI-CRYSTAL 

GRAIN BOUNDARY 

4.1 Introduction 

As I mentioned in Chapter 1 and 2, the goal of this project is to overcome the obstacles that 

conventional microwave measurements encounter in studying nonlinear properties of 

superconductors. Many experiments have studied the intermodulation power, harmonic 

generation, or the nonlinear surface impedance of superconductors as a function of applied 

microwave power [77,78,79]. However, most nonlinear experiments are done with 

resonant techniques, which by their nature study the averaged nonlinear response from the 

whole sample rather than locally. Such techniques usually have difficulty in either avoiding 

edge effects, which give undesired vortex entry, or in identifying the microscopic nonlinear 

sources. A technique that is capable of locally measuring nonlinear properties of samples 

would prove very helpful for identifying nonlinear mechanisms. In addition, most existing 

experimental techniques focus on 3  order nonlinearities, which can be conveniently 

studied by sensitive intermodulation techniques, but rarely address the 2  order nonlinear 

response. 

rd

nd
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    We think that the near-field microwave microscope is one solution to this challenge. In 

prior work in our group, Hu et al. [80] studied the “local” and “global” intermodulation 

signal from a high-Tc superconducting microwave resonator using a scanned electric field 

pick-up probe. However, the local measurements were actually a superposition of nonlinear 

responses that were generated locally but propagated throughout the microstrip and formed 

a resonant standing-wave pattern. To avoid this loss of spatial information, I have 

developed a non-resonant near-field microwave microscope, to non-destructively measure 

the local harmonic generation from un-patterned samples. Details of this microscope can be 

found in Fig. 1.10 and Chapter 1. 

    In this chapter, I present measurements done by this technique to locally characterize 2nd 

and 3rd order nonlinearities through spatially localized harmonic generation. The nonlinear 

mechanism responsible for this work is the Josephson nonlinearity in a long YBa2Cu3O7-δ 

(YBCO) bi-crystal grain boundary. It should be noted that there is another work of 

nonlinear microwave microscopy similar to our setup [72,81]. Instead of forming a loop 

shorting the inner and outer conductors, they use a straight wire connecting the inner and 

outer conductors. Although the work is similar, it was done quite independently from our 

work. 
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4.2 Sample 

To evaluate the ability of the nonlinear near-field microwave microscope to distinguish 

extrinsic local nonlinear features, I measured the local nonlinear response of an artificially 

made nonlinear feature: a single isolated YBCO bi-crystal grain boundary. The grain 

boundary shows weak-link Josephson nonlinearity at intermediate temperatures 0 < T/Tc < 

0.9Tc. The sample is a 500Å thick YBCO thin film deposited by pulsed laser deposition on 

a 10 mm µ 10 mm bi-crystal SrTiO3 substrate with a 30º-tilt mis-orientation angle. The 

distance between the loop probe and the sample is fixed by a 12.5µm thick TeflonTM sheet 

placed between them.  

    I first measured the temperature dependent 3rd order harmonic power (P3f) both above 

the grain boundary (GB) and far away from the grain boundary (non-GB), as shown in Fig. 

4.1(a). The input microwave frequency was ~ 6.5 GHz at 8 dBm, and the loop probe was 

made of a coaxial cable with 0.034” outer diameter. A strong peak in P3f(T) is observed 

around Tc~88.9K (measured by ac susceptibility) at all locations on the sample. The P3f(T) 

peaks have similar magnitudes at both locations (GB and non-GB) although there is a slight 

(~0.5 K) shift of Tc. Note that all measurements are taken near the middle of the film where 

we have verified that current-enhancement edge effects are absent. [82] 
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Fig. 4.1 (a) P3f(T) measured above the YBCO bi-crystal grain 
boundary (blue, GB) and away from the gain boundary (red, Non-
GB). (b) P3f(T) and P2f(T) measured above GB up to T = 250K. No 
signals above the noise level associated with the resonant modes 
due to the nonlinear dielectric constant of STO are observed in this 
temperature range. 
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    The peak near Tc is predicted by all models of NLME in superconductors, e.g. the BCS, 

GL theory, and Vigni’s model, and the predicted power-3 dependence (from the BCS and 

GL theories) of the P3f on the input microwave power (Pf) is observed. I also note that there 

is no observable signal seen in P2f near Tc for both GB and non-GB measurements, as 

expected for a time-reversal symmetric superconductor. 

    The SrTiO3 (STO) substrate is a nonlinear dielectric at low temperatures, and we have 

measured harmonic response from bare STO substrates below 80K [82]. The nonlinear 

response is confined to narrow temperature ranges at temperatures when the substrate 

becomes resonant due to its temperature-dependent, high dielectric constant. Therefore, if 

the nonlinear response is generated not only from the superconducting film, but also from 

the STO substrate, spiky features should be observed in P3f(T) over a series of narrow 

temperature ranges. These features should be even clearer for T > Tc, since the screening 

effect in the normal state is much poorer than in the superconducting state, and more fields 

are allowed to penetrate into the substrate to generate P3f signals. 

    As shown in Fig. 4.1(a), at temperatures below 80K, a strongly temperature dependent 

P3f is observed above the YBCO bi-crystal grain boundary, while no detectable P3f is seen 

away from the grain boundary. In addition, P2f and P3f above the grain boundary were 

measured between Tc and 250K, and no nonlinear response due to dielectric nonlinearity 

was observed (see Fig. 4.1(b)). Taken together, this is evidence that the observed P3f is 



 

 90 
 
 
 
 

from the grain boundary, not the nonlinearity of the STO substrate. Power dependencies of 

P2f and P3f were also performed at both GB and non-GB at 60K (áTc) and 95K (>Tc). The 

measurements taken at 95K do not show P2f nor P3f above the noise floor until reaching 

very high input powers. This nonlinear response comes from the microwave circuit system, 

which will be discussed later in Chapter 5. It is avoided in the measurements discussed here 

by applying lower input microwave powers. However, as shown in Fig. 4.2, at 60K, 

strongly power dependent P2f and P3f are observed above the grain boundary, while no 

response is seen above the background noise level away from the bi-crystal grain boundary. 

 
Fig. 4.2 Power dependence of P2f and P3f signals measured 
at and away from the bi-crystal grain boundary at 60K. The 
driving frequency = 6.5 GHz. 
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4.3 Spatially Resolved Measurement – 1D and 2D measurements 

To demonstrate that the microwave microscope is able to spatially resolve a localized 

source of nonlinearity, a measurement of P2f and P3f along a line crossing the grain 

boundary was performed. As shown in Fig. 4.3, a clear peak in both P2f and P3f is observed 

above the GB, with a width of about 500µm. The width of the observed P2f /P3f peaks are 

about the size of the loop probe, which determines the spatial distribution of the surface 

current on the sample. This interpretation is confirmed by reproducing this peak with the 

extended resistively shunted Josephson junction model (ERSJ) discussed below. A 

measurement of P2f and P3f along the grain boundary was also performed, and variations of 

both signals are observed, demonstrating its ability to resolve non-uniformity of the grain 

boundary. 

    To further address this capability, I imaged the YBCO grain boundary in two 

dimensiones. As seen in Fig. 4.4, the bi-crystal grain boundary is identified in both P2f and 

P3f images as a region of greatly enhanced nonlinear response (orange and red colors), 

though the spatial resolution is limited by the current probe size. 



 

 92 
 
 
 
 

 
Fig. 4.3 A line-scan of P2f(X) and P3f(X) across the bi-crystal grain 
boundary taken at T = 60K with driving frequency = 6.5 GHz. 
Spatially resolved enhancement of P2f and P3f signals around the 
grain boundary is observed.  
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Fig. 4.4 Spatially resolved 2D images of (a) P2f, and (b) P3f containing 
the YBCO bi-crystal grain boundary. The enhancement of P2f and P3f 
marks the location of the grain boundary, and the variation of P2f and 
P3f indicates the non-uniformity along the boundary. The temperature 
of the sample is 60K, and f = 6.5 GHz. The RF currents are flowing 
against the grain boundary. 

    It is clearly shown that the harmonic responses due to the nonlinearities of the grain 

boundary vary along the length of the grain boundary. Since an automated translation stage 

is not available for my setup and the loop probe size is relatively large (~500µm), the 

spatial resolution along both x- and y-direction are limited to about 500µm. By reducing 
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the probe size, we can improve the spatial resolution to the scale of 10 µm, as discussed in 

Chapter 7. 

4.4 Modeling the Origins of Second and Third Harmonic Generation in the 
Bi-crystal Grain Boundary 

It is well known that applying a single-tone microwave current to a single resistively 

shunted Josephson junction generates harmonics at all odd integer multiples of the drive 

frequency [44]. To obtain a more comprehensive understanding of weak link junctions, the 

Extended Resistively Shunted Josephson array (ERSJ) model was introduced to model long 

Josephson junctions, such as the YBCO bi-crystal grain boundary [45,83]. In this section, I 

present ERSJ models to simulate a YBCO bi-crystal grain boundary as either an array of 

identical inductively coupled, or independent (uncoupled), Josephson junctions acting in 

parallel.  

    In prior work with these bi-crystal junctions for SQUID microscopy in Prof. Wellstood’s 

group, the characteristics of the YBCO thin films deposited on a 30± mis-oriented STO 

substrate with our pulse-laser-deposition (PLD) facility were well studied. For a 

lithographically-defined 3µm wide Josephson junction made of a 1500Å thick YBCO film 

over a 30º mis-oriented bi-crystal grain boundary, the critical current and shunt resistance 

of this junction are measured to be about 50µA and 4-8Ω at 77K, respectively [84]. The 
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critical current density of this junction can be estimated accordingly, 

28 /101.1
1503
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    The Josephson penetration depth λJ is defined by  
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J πµ

λ Φ
= , 

where Φ0 is the flux quantum h/2e, Jc is the critical current density of the junction, dm is the 

magnetic thickness of the junction defined as )/coth(2)/coth(2 λλλλ ttddm ≅+= ,[85] t 

is the film thickness (which is 500Å in my case), and d is the thickness of the bi-crystal 

junction, which is not more than a few nano-meters. Using the Kulik-Omelyanchuk theory 

[86] to estimate the temperature dependence of the critical current density, we found that 

. With the additional assumption that 

λ(T=0)=1800Å and λ(T) has a GL-like temperature dependence, 

28 /1053.2)77(3.2)60( mAKJKJ cc ×≅≅

2)/(1)0()( cTTTT −=≅ λλ (Tc ~ 89.5K), the Josephson penetration depth λJ is 

estimated to be around 0.67µm at 60K. On the other hand, assuming that the critical current 

and shunt resistance are simply proportional and inversely proportional to the cross 

sectional area of the junction, respectively, the critical current and shunt resistance of each 

junction (with size λJ) in the ERSJ model are ~ 8µA and ~ 70Ω at 60K, respectively.  
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    The currents applied to each junction in the ERSJ model vary according to the surface 

current distribution on the film induced by the loop probe. The nonlinear potential 

differences across all junctions are calculated via different means, which will be discussed 

later. The expected higher order harmonics are obtained via summation of all potential 

differences and Fourier transforming this collective nonlinear potential difference at twice 

and triple the fundamental frequency. The spatial distribution of the surface current density 

is calculated from a simplified analytical model (discussed in detail in the previous chapter) 

of an ideal circular loop in a vertical plane, with radius 270µm, coupling to a perfectly 

conducting horizontal plane 382.5µm away from the center of the loop. The magnitude of 

the current density is determined by a much more sophisticated microwave simulation 

using the AnsoftTM High Frequency Structure Simulator (HFSS) software, which also 

produces a similar surface current distribution. 

4.4.1 Uncoupled ERSJ Model Solved by Mathematica 

My uncoupled ERSJ model of the grain boundary consists of 1001 equally spaced 

independent Josephson junctions, with spacing determined by the Josephson penetration 

depth λJ ~ 0.65µm, as shown in Fig. 4.5. 



 

 97 
 
 
 
 

 
Fig. 4.5 Schematic of the un-coupled ERSJ model. The 
applied current distribution functional form is represented 
by the discrete current sources In. 

    The calculation of P3f in the uncoupled ERSJ model is performed by MathematicaTM by 

simulating the nonlinear potential difference of each junction governed by the equation 

    2
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where Φ0 is the flux quantum h/2e, I0Sin(ωt) is the driving AC current which varies in 

magnitude with junction position, Ic is the critical current of the junction, R and C are the 

shunted resistance and capacitance of the junction, and ∆γn(t) is the time-dependent gauge 

invariant phase difference across the n-th junction. In the range that the driving frequency is 

small compared to the plasma frequency of the junction, CIp 002 Φ=<< πωω , the 

contribution from the shunted capacitance can be ignored, and the equation becomes 
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    The nonlinear potential differences are obtained by solving this equation for each 

junction with various driving currents determined by the current distribution mentioned 

before, and the derivative of ∆γ(t) gives the potential difference 

    
dt

tdtV )(
2

)( 0 γ
π

∆Φ
= . 

    By summing up the nonlinear potential differences of all junctions, the second and third 

harmonic contents are extracted via Fourier transformation at twice and triple the 

fundamental frequency ω. It is found that this model only produces third harmonic 

generation, which is shown as the dashed line centered around 4 mm in Fig. 4.6, and no 

second harmonic signal is generated. The spatial dependence in fig. 4.6 is produced by 

taking different slices through the I(x,y) current distribution produced by the loop probe, 

and using them to drive the coupled and un-coupled ERSJ array. The current distribution is 

calculated by the ideal-loop analytical model. 

    The absence of P2f is due to the absence of Josephson vortices in this model. 

Additionally, this model predicts a narrow spatial distribution of P3f of greater magnitude 

(almost 20dB) than is observed experimentally. A power dependence calculation from this 

uncoupled ERSJ model is also performed and compared with experimental results (dashed 

line in Fig. 4.2). The comparison shows qualitative agreement with the P3f(Pf) data taken 

over the GB. The saturating behavior of P3f(Pf) in Fig. 4.2 is characteristic of a driven 

Josephson junction GB. 
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Fig. 4.6 Coupled (solid blue and red lines) and uncoupled (dashed line) ERSJ 
model calculations compared with the experimental P2f (red circle) and P3f 
(blue triangle) data shown in Fig. 4.3. At top is the schematic of the 
experiment. 

4.4.2 Coupled ERSJ Model by WRSpice® 
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On the other hand, the calculation with the inductively coupled ERSJ model, which 

includes Josephson vortices, performed by WRSpice, gives a very good description in both 

magnitude and spatial resolution of the experimental results for both P2f and P3f (the results 

are shown as solid lines in Fig. 4.6).  

    The only difference between the uncoupled and coupled ERSJ models is the lateral 

inductances, which simulate the magnetic coupling between junctions (see Fig. 4.7). The 

coupling inductances are determined by an algorithm established in Oates’ group by 

considering a single static vortex in an infinite junction. According to this algorithm, the 

lateral inductance per unit length along both sides of the junction is [45, 85] 

    
t
dl m

lengthunit 2
0µ

= , 

where )/coth(2 λλ tddm +=  is the magnetic thickness of the junction, t is the film 

thickness, λ is the magnetic penetration depth, and d is the junction thickness, which is a 

few nano-meters. In my case, this lateral coupling inductance lcell is about  for 

each unit cell, which has a size of λ

H11102 −×

J. 
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Fig. 4.7 Schematic of the coupled ERSJ model simulated 
by WRSpice®. The X represents a Josephson junction. 

    With the characteristic parameters of the junction mentioned previously, together with 

the lateral coupling inductance, I make a circuit consisting of 2001 unit cells as shown in 

Fig. 4.7, as an estimation of the real Extended Resistively Shunted Josephson junction. This 

circuit is simulated via software developed by Whitely Research Inc., called WRSpice®, 

which was developed to calculate the electrical response of superconducting Josephson 

circuits. A detailed description of how to simulate the circuit using this software can be 

found in Appendix B. 

    Most parameters used in WRSpice® are associated with the sample properties, and are 

pretty well determined, except for the input currents. Since the input currents are 

determined by the probe/sample coupling which is not exactly known, I assumed the total 

input current is roughly estimated as 88 mA, based on the HFSS calculation discussed in 

Chapter 3. 
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    The results of this model are shown as solid lines in Fig. 4.6. We see that the model 

correctly reproduces the spatial distribution of P2f and P3f, and does a good job of 

reproducing the magnitude of P2f. The magnitude of P3f is overestimated by about 10 dB 

over the center of the GB. 

4.5 Vortex Dynamics Discussion with WRSpice® Simulations 

To further our understanding of the physics governing the local nonlinearities, especially 

the P2f response, we use the ERSJ model calculated by WRSpiceTM to evaluate the 

nucleation and motion of Josephson vortices in the middle of an infinite junction.  

A long Josephson junction can be described by the sin-Gordon equation,[45]  

    2
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where ∆γ is the gauge-invariant phase difference across the junction, λJ is the Josephson 

penetration depth, cJ JL π20Φ≡ , dRJ ρ≡ , ρ and d are the junction resistivity and 

thickness, and dCJ /ε≡ . The WRSpice® model is equivalent to solving this equation on a 

grid. We calculate the key quantity ∆γ(n,t), where n indicates the n-th discrete junction, to 

extract other physical quantities, such as the magnetic field and flux at each junction.  

The magnetic field along the grain boundary is given by  
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where Φ0 is the flux quantum, and )/coth(2)/coth(2 λλλλ ttddm ≅+=  is the magnetic 
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thickness of the junction. Since the distance between the junctions is λJ in the model, the 

flux between adjacent junctions is determined by  
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It is pointed out that the locations where the gauge-invariant phase difference are odd 

multiples of π are the cores of vortices with a full flux quantum. On the other hand, we 

think that calculations of the magnetic flux as a function of position and time also directly 

represent the motion of vortices along the grain boundary. 

4.5.1 Oates’ ERSJ calculation 

To validate our approach, I tried to reproduce the vortex dynamics of the superconducting 

(YBCO) strip line resonator of Oates, et al. with a bi-crystal grain boundary crossing the 

middle of the resonator (see the inset of Fig. 4.8). This setup allows vortices to enter the 

YBCO thin film from the edges. 

    Oates et al. calculated the vortex motion along the bi-crystal grain boundary as a 

function of time (see Fig. 4.8). They found that more vortices enter the sample from the 

edge as they increased the input power, and also that the vortices go deeper toward the 

center of the strip line during an RF period. 
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Fig. 4.8 Trajectories of vortices simulated by Oates’ group for their 
superconducting strip line resonator as shown in the inset. The strip 
has a width of 150 µm. This figure is taken from Ref. [45]. 

    Taking the parameters (l = 0.5 pH, R = 8 Ω, Ic = 40 µA) estimated for Oates’ setup [45], I 

reconstructed and simulated Oates’ ERSJ model with WRSpice® at different total input 

currents (1 – 8 mA). Qualitatively, I was able to reproduce the motion of vortices that Oates 

found. One of the ways to locate the vortex cores is to find the locations where the gauge-

invariant phase differences ∆γ are odd multiples of π. Therefore, by calculating ∆γ as a 

function of time for each junction, I can locate the vortex core at any moment. Shown in 

Fig. 4.9 are trajectories of vortex cores for various total input currents (2 – 8 mA). It is clear 
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that not only are the trajectories moving towards the center of the strip line resonator as 

larger currents are applied, but also more and more vortices are generated (one vortex for 2 

mA; four vortices for 8 mA) in each RF cycle. 

 
Fig. 4.9 Trajectories of vortices in one RF cycle simulated for 
different total input currents in Oates’ strip line resonator. 
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4.5.2 Vortex Dynamics in Our YBCO Bi-crystal Grain Boundary 

I next used WRSpice® to simulate my own setup. In my case, there are no edges that can 

act as easy nucleation sites for the vortices. 

    The parameters used in WRSpice® are the same as previously stated for the GB junction 

driven by the loop probe. The lateral coupling inductance in each unit cell is 2×10-11 H, the 

shunt resistance is 70 Ω, and the critical current of each Josephson junction is 8 µA. The 

vortex trajectories shown in Fig. 4.10 are simulated with a total current of ~ 88 mA. Also 

shown is the flux profile along the long junction, in the middle of an RF cycle (t = 0.5T). 

The driving current distribution is peaked at the center of the long junction (junction 

number = 1001). 

    From Fig. 4.10, we observe that vortex-anti-vortex (VAV) pairs are generated near the 

center of the junction, and are then pushed apart pair by pair in the first half of the RF 

cycle. In the second half of the RF cycle, when the currents reverse direction, the VAV 

pairs are drawn back and annihilate near the center of the junction. The slope of the 

trajectories in Fig. 4.10 represents the speed of a vortex. If the trajectory is vertical in the 

plot, the vortex is stationary. If the trajectory is nearly horizontal, the vortex is moving very 

fast. It is noted that the simulation does not demonstrate continuous motion of vortices. 

When the VAV pairs are expelled from or drawn to the center of the junction, they jump 
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between discrete locations marked by the spikes in the flux profile. The locations of the 

vortex spikes are fixed throughout the RF cycle. 

 
Fig. 4.10 WRSpice® simulation for vortex dynamics in a YBCO bi-
crystal grain boundary. (a) trajectories of vortex cores, (b) flux profile 
along the grain boundary at t = 0.5T. (c) current distribution. 

    The first three vortices created in the RF cycle show a very complicated history of VAV 

creation and annihilation. We attribute this complication to the fact that many junctions 

experience currents near their critical currents nearly simultaneously. In the stripline model, 



 

 108 
 
 
 
 

only a few junctions at the edges are reaching their critical current at a given instant in the 

RF period. 

4.6 Extraction of JNL from the Data 

Different microscopic models of nonlinearity predict different values and temperature 

dependences of the nonlinear scaling current density JNL(T). For example, in the nonlinear 

Meissner effect and Ginzburg-Landau theory, JNL ~ 108 A/cm2 or higher, except for 

temperatures close to Tc, while the JNL of a long 1-D Josephson junction array is expected 

to be about 105 ~ 106 A/cm2 or less [68]. To further evaluate the capability of our 

microscope to detect intrinsic superconducting nonlinearities due to different mechanisms, 

I extract a geometry-free scaling current density, JNL, from our data. Following the 

algorithm and assumptions described in Chapter 3 and assuming λL(T=0,J=0)=1500Å, the 

JNL of a line-scan across the YBCO bi-crystal grain boundary is extracted from the P3f data 

in Fig. 4.3, and shown in Fig. 4.11. 

    I obtain the dominant JNL near the grain boundary at 60 K to be JNL
GB~ 1.5×105 A/cm2, 

which is comparable to Willemsen’s result [68], while the sensitivity of our microscope to 

this sample is currently limited to JNL ≤ 1.4×106 A/cm2. However, the model calculation 

suggests that thinner films and stronger coupling between the film and the loop probe will 

give stronger nonlinear response from a given mechanism, and improve the sensitivity to 

the nonlinearities associated with larger values of JNL. 
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Fig. 4.11 The P3f(X) (red) experimental data in Fig. 4.3 is shown 
together with the extracted nonlinear current density scale JNL(X) (blue). 
The sample is a YBCO bi-crystal grain boundary junction, measured at 
60K with driving frequency = 6.5 GHz. 

4.7 Conclusion 

I demonstrated the ability of our nonlinear near-field microwave microscope to locally 

identify the YBCO bi-crystal grain boundary via harmonic measurements. The scaling 

current density for the grain boundary is extracted and is comparable to what is expected.  

    The spatially resolved harmonic measurements are interpreted with the ERSJ model 

simulated by WRSpice® software. Both the magnitude and width of the harmonic signals 

are well reproduced. We also use WRSpice® to simulate the vortex dynamics in the grain 

boundary. The vortex-anti-vortex (VAV) pairs are generated beneath the loop probe (the 
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center of the current distribution). The VAV pairs are expelled from and drawn to the 

center in the first and second half of RF cycle respectively. However, the vortices do not 

move continuously but jump among discrete locations. 
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CHAPTER 5 

DOPING DEPENDENT NONLINEARITIES IN HTSC 

– SYSTEM AND SAMPLE CHARACTERIZATION 

As addressed in previous chapters, nonlinearities in high-Tc superconductors (HTSC) have 

been of increasing interest. In particular, deeper understanding of high-Tc superconductivity 

may be gained by understanding the distinct nonlinear phenomena present in HTSC. In this 

chapter I demonstrate how I can use the near-field microwave microscope as an 

independent means to measure and identify doping-dependent nonlinearities in HTSC. 

    Many important phenomena in HTSC are found to be doping-dependent. For example, 

the recently proposed micro-current model by Varma [64] in under-doped HTSC is 

expected to be a doping-dependent effect. This is expected because of the onset of this 

micro-current is expected to occur at the pseudo-gap temperature, T*, which varies 

considerably with doping (from greater than 300K to 100K) in under-doped YBCO.  C. 

Nayak has proposed a different micro-current model for the pseudogap phase in HTSC 

[87]. This phase will break time-reversal symmetry and also be doping-dependent.  

Another doping dependent nonlinearity observed is in the Andreev Bound States (ABS) 

proposed by Deutscher et al. [56]. They claimed that this time-reversal symmetry-breaking 
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(TRSB) mechanism in ABS is only seen in over-doped YBCO, but absent in under-doped 

ones.   

    In addition to the doping-dependent TRSB mechanisms, recent work by Tallon et al. [88, 

89] claim that the zero-temperature condensation energy, U0, in under-doped HTSC is 

doping dependent.  From Tallon’s work, we can conclude that the nonlinear Meissner 

effect (NLME) should also be doping dependent.  This is because the de-pairing critical 

current density, which sets the scale for the NLME, scales with 0U .  

5.1 Experimental Setup and Sample Description 

5.1.1 Brief review of the microscope 

As described in Chapter 1, our microscope consists of a HP83620B microwave synthesizer, 

a set of microwave amplifiers from MITEQ, low- and high-pass filters, a probe, and an 

Agilent E4407B spectrum analyzer. The synthesizer generates a single tone microwave 

signal at the desired frequency f (~6.5 GHz), along with additional weak harmonics.  

    To guarantee high spectral purity in the input signal to the sample, we use low-pass 

filters to purify the signal going into the sample.  To apply this signal to the sample, we use 

a magnetic loop probe.  The probe is made of a semi-rigid coaxial cable with its inner 

conductor forming a semi-circular loop in contact with the other conductor, to couple the 

signal to the sample (see Fig. 1.4(a)).  By doing so, a microwave current distribution 

determined by the loop geometry is locally induced on the sample surface. If any local 
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nonlinear mechanisms are present in the sample, the resulting currents on the sample will 

contain higher order harmonics (TRS: 3f, 5f, 7f,…; TRSB: 2f, 4f, 6f,…). These signals (the 

strongest are at 2f and 3f) couple back to the microwave circuit through the loop probe, and 

are selected by the high-pass filters (at 2f and 3f), amplified by the amplifiers by ~ 65dB, 

and are finally measured by the spectrum analyzer. The loop probe I used is made of a 

completely nonmagnetic semi-rigid coaxial cable with 0.037” outer diameter (OD), so that 

undesired magnetic perturbation from the probe itself is avoided. 

5.1.2 Samples 

Our samples are [001] oriented YBa2Cu3O7-δ (YBCO) thin films originally prepared by 

Matt Sullivan in the Center using the pulsed laser deposition (PLD) technique on NdGaO3 

(NGO) and SrTiO3 (STO) at the optimal-doping level (δ ~ 0.05). After the deposition, 

some of the samples were treated by Benjamin Palmer to vary the oxygen deficiency using 

an annealing process he developed in the Laboratory for Physical Science (LPS) [90]. The 

change in oxygen content has the effect of varying the hole concentration of the films.  The 

AC susceptibility of each film was measured after the re-annealing procedure. We find that 

some broadening of the transition for lower doping levels was observed.  

    Figure 5.1 shows the AC susceptibility measurements (imaginary part) of samples 

MCS1, MCS4, and MCS48, which have different doping levels. The broadening of these 

peaks marks the broadening of the transition and is quantified by ∆T, defined as the full-
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width-half-magnitude of the peaks. This broadening can be a result of the residual σ2 in 

under-doped (UD) HTSC at T > Tc [91,92], and/or the inhomogeneous oxygen content 

over the sample due to the re-annealing treatment. Listed in Table 5.1 is a summary of the 

physical properties of films I’ve measured as well as their estimated doping levels. 

Table 5.1 Parameters of oxygen-doped YBCO thin films. The Tc’s and ∆T’s are 
determined by AC susceptibility measurements (Im(χ)). I measured the Tc’s twice on 
MCS2, MCS48, and MCS50. The results are separated by “;”. On MCS2, a double 
peak pattern is observed in Im(χ) in the second measurement, and the corresponding 
Tc of each peak is separated by “/”.  

Sample Maker Substrate Thickness Tc (K) ∆T (K) Hole 
Doping 

MCS48 Sullivan NGO 96 nm 47.86; 45.8 ~3 0.082 

MCS50 Sullivan NGO 96 nm 75.7; 74.2 ~ 1.3 0.116 

MCS1 Sullivan STO 132 nm 63.1 ~1.3  

MCS2 Sullivan STO 185 nm 81.56;  
83.96/82.08 

~ 1.3 0.13 

MCS3 Sullivan STO 130 nm 90.5 ~ 0.7 0.16 

MCS4 Sullivan STO 95 nm 54.15 ~ 1.7 0.088 
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Fig. 5.1 Imaginary part of the AC susceptibility measured for 
YBCO thin film samples MCS48, MCS4, and MCS1, which 
have different doping levels. Broadening of the transition is 
observed as the doping level decreased. 

5.1.3 Field dependent P2f and Importance of the Magnetic Shielding Assembly 

One of the hallmarks of superconductivity is perfect diamagnetism (the Meissner effect). A 

superconductor immersed in a static magnetic field spontaneously excludes all magnetic 

fields when it is cooled below Tc.  This phenomenon is sustained by the screening currents 

flowing in the superconductor, and is therefore limited by the geometry of the 

superconductor and the magnitude of the fields to be excluded.  For a Type II 

superconductor, when the Meissner screening currents can no longer sustain the perfect 

diamagnetism because the external magnetic field is too large, the superconductor enters 

into the mixed state, allowing vortices to penetrate. For a thin film [93] with a magnetic 
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field normal to the surface, demagnetization factors are important. In particular, the larger 

the surface area is, the smaller the magnetic field required to induce vortices in the sample. 

An estimate of the first vortex entry field, Bv, is given by 

    
A

Bv
0Φ

≅ , 

where Φ0 = 2.07µ10-15 Tm2 is the flux quantum, and A is the surface area perpendicular to 

the field. 

    Given that most of my samples are  YBCO films, the magnetic field 

required to induce vortices in the film in the worst-case scenario is ~ 0.2µG. This is much 

smaller than the earth’s residual magnetic field (on the order of ~ 0.5G). Since the 

nonlinearities we are looking for include TRSB mechanisms, which usually involve local 

spontaneous currents or magnetizations, we must be aware of, and do our best to eliminate, 

the externally induced vortices in the samples.  

21010 mm×

    My early harmonic data on films at various doping levels were taken in the presence of 

the residual magnetic field of the earth, along with all other possible electromagnetic (EM) 

disturbances from the equipment in the laboratory.  Though the third harmonic 

measurements are very reproducible, the second harmonic data, which addresses the 

presence of TRSB mechanisms, are not. As shown in Fig. 5.2, four zero-field-cooled 

temperature ramps from T < Tc to T > Tc were performed under these conditions. Fig. 

5.2(a) and (b) were measured on different days. The P2f(T) data does not show good 
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reproducibility whether we compare data taken on one day or between different days, while 

the P3f(T) data is much more reproducible. Note also that the background P2f level 

increased substantially on the second day (Fig. 5.2(b)) and interfered destructively with the 

signal generated by the sample. 

 
Fig. 5.2 Temperature dependent harmonic measurements of an 
optimally doped YBCO thin film (MCS1) taken on different days at 
slightly driving different frequencies (differing by less than 5 MHz). 
The measurements are performed in an unshielded environment. 
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    In addition, second harmonic data were taken under applied DC magnetic fields, along 

with the earth’s field and all other EM disturbances. The applied DC field is in the direction 

perpendicular to the film.  Strong field dependence is observed in the second harmonic data 

(Fig. 5.3), which indicates that vortices are involved in the measurement. The inset in Fig. 

5.3 shows P2f(H) measured at T = 51K. Different maximum value field-ramps are 

performed, and hysteretic behavior is observed in both cases, indicating that flux has 

penetrated to the sample. It is worth noting that no second harmonic generation is observed 

above Tc at all DC fields, which means that there is no DC field-dependent background 

present in our harmonic measurements. Also note that the third harmonic data is rather 

insensitive to the magnetic field, at least in the vicinity of Tc. 
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Fig. 5.3 The bottom data demonstrates that P2f is affected by the applied 
magnetic field. The sample (MCS4) was cooled through Tc with various 
DC magnetic fields (pointing downward) and the temperature dependent 
harmonic measurements were taken during warming. The top data is a 
field-dependent measurement on the same sample performed after the 
sample was cooled through Tc to ~51 K in the Earth’s field. 
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    To eliminate (or at least reduce) the effect of vortices on our harmonic measurements, I 

designed a multi-layered magnetic shielding assembly, shown in Fig. 5.4. In fact, this was 

designed and built in collaboration with Amuneal (Philadelphia, PA). This assembly 

consists of four layers of high permeability metals, which have different magnetic 

characteristics in different temperature ranges. Two of the layers are made of Amumetal, 

which have extremely high permeability at higher temperatures (µr ~ 90000), including 

room temperature, but gradually decrease at lower temperature. Another two layers are 

made of Cryoperm 10® metal, and have extremely high permeability at lower temperatures 

(µr ~ 80000), but decreases at higher temperatures. Using both metals in our multi-layered 

shielding assembly allows us to have a very efficient shielding assembly over a wide 

temperature range. Finally, the bottom plate of this assembly is made of ultra-low-carbon 

steel, which has a very high saturation fields, about 22000 Gauss at room temperature. This 

is not crucial in our experiment because what we want to shield out is merely the earth’s 

residual field. But it will be helpful if one needed to shield out much stronger magnetic 

fields. 

     Although my field dependent measurements of the second harmonic data was not 

performed after the installation of this assembly, we found that the shielded “zero-field” 

second harmonic data are much more reproducible, which indicates a very minimal 

contribution from magnetic vortices. Figure 5.5 shows that the P2f(T) data taken in the 

shielded environment are much more reproducible. 
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Fig. 5.4 Magnetic shielding assembly made by Amuneal. The lower 
picture shows the assembled shield. The upper picture shows the un-
assembled view of the cylinders before they are nested together on 
the ultra-low carbon steel sample platform. 



 

 122 
 
 
 
 

 
Fig. 5.5 Harmonic measurements of different samples taken after 
installation of the magnetic shielding assembly. Part (a) shows 
four runs of P2f(T) and P3f(T) on MCS50 while (b) shows two 
runs of P2f(T) and P3f(T) on MCS48, all near Tc. 
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5.1.4 Determination of the doping level of YBa2Cu3O7-δ 

We don’t have a means to precisely and directly measure the oxygen deficiency, or the hole 

concentration, x. To estimate the hole concentration of our films, I use the approximate 

universal formula for Tc of HTSC vs. x [94], 

    2)16.0(6.821 −−= x
T

T
optimal

c

c . (5.1) 

Using this equation, I can convert from Tc measured by AC susceptibility to x.  This 

formula was used successfully by an M.S. student in our lab, Senta Karotke [95], although 

she used it on oxygen-doped YBCO and Ca-doped YBCO crystals. 

5.2 Doping-dependent quantities in HTSC 

In spite of the controversial doping dependent TRSB nonlinearities discussed in Chapter 2, 

it is well accepted that some important quantities of superconductors vary with hole-

concentration.  For example, the doping dependence of the London penetration depth in the 

under-doped cuprates is well studied, although it is less clearly elucidated in the over-doped 

cuprates.  Ultimately, I would like to study the doping dependence of the Meissner-state 

nonlinearity mechanism. Therefore, it is important to eliminate the doping dependent effect 

caused by quantities, e.g. the penetration depth, other than the nonlinear mechanism itself, 

so that the true doping dependence of the nonlinear mechanism can be revealed. In this 

section, I will discuss how such quantities manifest themselves in the harmonic 

measurements, and contribute to doping-dependent nonlinearities in HTSC. 
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5.2.1 London Penetration Depth 

From Chapter 3 we know that the penetration depth comes into our determination of JNL, 

JNL’, etc. In the early 90’s, Uemura et al. [96] performed extensive muon spin relaxation 

(µ-SR) experiments to measure the London penetration depth of HTSC cuprates. They 

claimed a universal result that λ(0)-2 (and by implication the super-fluid density divided by 

the effective mass) is linearly related to the Tc in the under-doped regime. Recent research 

on the effect of doping on the zero-temperature penetration depth, λ0, of YBCO and La2-

xSrxCuO4 (LSCO) by Panagopoulos et al. [97] demonstrated similar results. The results on 

YBCO from various groups are listed in Table 5.2 with references. On the other hand, from 

the works of Panagopoulos et al. and Gou et al. [97,98], we find that the temperature 

dependence of λ is only weakly changed by doping in the under-doped regime, and can be 

legitimately approximated by the BCS or GL theory near Tc (most researchers see GL 

behavior of λ(T) near Tc in thin films).  In the interpretation of data from our experiments, 

we will need to estimate the doping and temperature dependence of the magnetic 

penetration depth. We shall use the doping dependence of λ0(x) from the literature, and the 

GL expression of ( )[ 2/12
0 1)(

−
−= cTTT λλ ]  for temperatures near Tc. 
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Table 5.2 Summary of the penetration depth measurements on YBCO 
ceramics, thin films, and single crystals from various groups. 

YBa2Cu3O7-δ samples δ Tc (K) λab(0) (µm) Reference 

Aligned grain ceramic 0 92 0.14 [97] 

Aligned grain ceramic 0.3 66 0.21 [97] 

Aligned grain ceramic 0.43 56 0.28 [97] 

Film 0.05 90.5 0.15 [98] 

Film 0.2 83 0.216 [98] 

Film 0.4 55 0.282 [98] 

Crystal 0.05 93.2 0.1315 [99] 

Crystal 0.4 59 0.185 [99] 

 

5.2.2 Zero-Temperature Condensation Energy 

Recent works done by Tallon’s group [88, 89] reported the doping-dependent condensation 

energy in YBCO poly-crystals by measuring the electronic specific heat γ, vs. temperature.  

The electronic entropy can be obtained by integrating the electronic specific heat 

, and the free energy density difference  can be 

obtained by integrating the entropy difference 

∫=
T

dTTTS
0

)()( γ 2/)(2
0 THFF csn µ=−

sn SS −  between Tc and T, where Hc is the 

thermodynamic critical field.  The zero-temperature condensation energy density 

 can be derived from the specific heat data, as shown in Fig. 5.6. 2/)0()0( 2
0 cHU µ=
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Details of how to treat the experimental specific heat data and extract the zero-temperature 

condensation energy can be found in Ref. [100]. 

    In addition to this data, since λcc JH ≅ , where Jc is the de-pairing critical current 

density (responsible for the NLME) and λ is the London penetration depth, we can extract 

the doping dependent de-pairing critical current density (at T = 0) from this data, 

)(/),0(2)(/),0(),0( 000 xxUxxHxTJ cc λµλ =≈= , 

where x denotes the doping dependence of these quantities. This leads to the conclusion 

that the NLME will be doping dependent. 

 
Fig. 5.6 Zero-temperature condensation energy density 
and Tc’s determined by Tallon’s group [88, 89] via 
measurements of the specific heat of 30% Ca doped 
Y0.7Ca0.3Ba2Cu3O7-δ poly-crystals with various oxygen 
doping δ. 
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5.3 Mechanisms of nonlinear response in under-doped YBCO 

Experimentally, it has been a challenge for experimentalists to distinguish the origins of 

different types of nonlinear mechanisms from their results. The following are candidate 

nonlinear mechanisms which could be responsible for our results. Some strategies to 

distinguish between these mechanisms are also proposed. 

5.3.1 Background nonlinearity of the experimental apparatus 

I am aware of higher harmonics generated by our microwave measurement system. To my 

knowledge, there are three main reasons for a circuit to respond in a nonlinear manner.  

    As mentioned earlier, my system consists of various microwave devices, which are most 

likely nonlinear to some extent. For example, transistors are used in amplifiers, which are 

known to be nonlinear devices. Secondly, if magnetic materials are present in the 

microwave circuit, the enhanced second and third harmonic signals are expected because of 

the hysteretic behavior of magnetic materials. I did my best to replace the coaxial cables, 

adapters, and connectors, which were made of magnetic materials (such as Ni plating), with 

ones made of non-magnetic materials. However, there are still some connectors that I could 

not replace with commercially available non-magnetic equivalents. Therefore, I must be 

aware of the harmonic signals generated by these connectors. Thirdly, it is also known that 

a bad electrical contact may also generate higher harmonics because of the presence of 

metal/insulator/metal interface in such contacts. Therefore, soldering is preferred to 
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mechanical clamping in making electrical contacts in coaxial connectors. However, there 

are places in our microwave circuit where devices and coaxial cables are connecting to 

each other directly or via adapters. In these cases, mechanical clamping is the only way to 

make electrical contacts (e.g. coaxial center conductor pin is clamped by the female 

receptacle). Therefore, while the best I can do is to clean the contact interfaces thoroughly, 

these contacts are still potentially troublesome in terms of harmonic generation. Articles 

regarding these issues can be found in Ref. [101], [102], and [103]. 

    Despite these efforts, there is still non-linear background response from my measurement 

system. The way I treat this problem is to measure the harmonics generated by the system 

as a function of the driving frequency and amplitude. Though I did not intentionally make 

my microscope to be a microwave resonator, standing wave patterns are still present in the 

microwave circuit due to the inevitable impedance mismatches between devices. They are 

probably due to non-perfect electrical contacts or the impedance mismatch on the 

input/output ports of the amplifiers. By changing the driving frequency, we are changing 

the standing wave patterns in the circuit, and hoping to find some frequencies at which the 

harmonics generated by the three troublemakers discussed above are minimal. Shown in 

Fig. 5.7 is a measurement of the reproducible background harmonics generated by the 

system as a function of the driving frequency. This characteristic doesn’t change much as 

the temperature is varied in my cryostat. From this, and other data, we know that the 

background harmonics come mainly from the microwave circuitry kept at room 
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temperature. Therefore, for all of my harmonic measurements, the driving frequency is 

fixed around 6.5GHz, where both P2f and P3f show no signals above the noise floor in Fig. 

5.7. 

 
Fig. 5.7 P2f and P3f generated by the system (background 
nonlinearity) as function of the driving frequency. No 
sample is present, and the microscope is at room 
temperature. The input power is 12 dBm. 

5.3.2 Granularity and weak links 

It is well known that the HTSC films of cuprates can be granular, which means grains and 

grain boundaries are naturally found in films deposited by various techniques [104]. The 

superconducting properties due to such granularity in thin films are usually modeled by a 

2D network of weak links, each of which can be represented as a Josephson junction. 
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Through the work on an artificially prepared 1D weak-link feature, the bi-crystal YBCO 

grain boundaries (presented in the previous chapter) we have shown that an ERSJ model 

well describes the observed second and third harmonic generations from such features [7]. 

In the model, the second harmonic generation is attributed to the time-irreversible motion 

of the Josephson vortices along the boundary, while the third harmonic is expected from 

the nonlinear inductance of the Josephson junction.  This work indicates that for a granular 

HTSC film, if a weak-link network is formed, and the Josephson effect dominates the 

behavior of this network, both second and third harmonic generations are likely to be 

observed because of the presence of Josephson junctions and Josephson vortices. 

5.3.3 TRSB Physics 

As described in Chapter 2, the TRSB nonlinear mechanisms in HTSC are not well 

understood. The proposal of Varma [64] claims the presence of a TRSB mechanism in all 

under-doped cuprates at all temperatures below the pseudo-gap temperature, T*. This 

proposal has been tested by ARPES groups [65, 66], but no consensus has been reached on 

the interpretation of the data. With the capability to measure both TRS and TRSB nonlinear 

mechanisms, validated by our work on the YBCO bi-crystal grain boundaries, we should 

be able to test this proposal with our microscope. 

Another proposal, also described in Chapter 2, is the Andreev Bound states nonlinearity. It 

is claimed by tunneling experimentalists [52, 56] that there are spontaneous surface 
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currents flowing in this surface state, which break the time-reversal symmetry. This may be 

an observation of the spontaneous surface magnetization proposed by Barash [60] for 

 in ABS. This TRSB state likely breaks up into domains on the surface.  

However, the doping dependence of these phenomena is controversial. Though my current 

set up does not allow me to extensively investigate nonlinear properties at such low 

temperatures (below 7K for Laura Green’s proposal, below 1K for Barash’s proposal), this 

microscope is potentially capable of such investigations. 

cTT 01.0≤

5.3.4 Tests to distinguish which model is most viable 

As mentioned above, it is important to distinguish different mechanisms involved in our 

measurement.  From the literature [105] and my work [7] on YBCO bi-crystal grain 

boundaries, harmonic generation, especially the second, from the weak-links should have a 

non-monotonic dependence on the input microwave power (see Fig. 4.2). On the other 

hand, since there are spontaneous currents or magnetizations associated with those intrinsic 

TRSB mechanisms in HTSC, it is likely that there is a characteristic scaling current density 

associated with each one. If these mechanisms manifest themselves in a manner as 

mentioned in Chapter 3, a monotonic power-2 dependence of the second harmonic signal 

on the input power is expected, and the magnitude of JNL’ should be in agreement with the 

theoretical predictions.  
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    In the next chapter, I will present detailed analysis of the P2f and P3f data taken on 

variously doped YBCO thin films. Both JNL and JNL’ (JTRSB) will be extracted and discussed 

in detail. 
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CHAPTER 6 

DOPING DEPENDENT NONLINEARITIES IN HTSC 

 – DISCUSSION OF 2ND AND 3RD HARMONIC DATA 

Taking the issues discussed in Chapter 5 into account, including proper magnetic shielding, 

selection of fundamental frequency, and estimates of the doping-dependent penetration 

depth, we can now perform reliable and reproducible harmonic measurements on YBCO 

thin films. Show in Fig. 6.1 is a typical harmonic data of an under-doped YBCO thin film. 

AC susceptibility data is also shown in this figure to determine Tc independently from the 

harmonic data. Both P2f and P3f data show a peak near Tc. The significant difference 

between them is that P3f extends to T > Tc and P2f drops to noise floor at Tc. Systematic 

study and analysis of P2f and P3f data will be discussed in this chapter. 
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Fig. 6.1 A typical harmonic data (both P2f and P3f) of an under-doped 
YBCO thin film with Tc ~ 75K. AC susceptibility data is shown to 
independently determine Tc.  

6.1 Magnitude of P3f varies with doping levels 

When harmonic measurements are performed on superconducting samples as a function of 

temperature, one signature is always seen.  This signature marks the presence of the 

normal/superconducting phase transition, and appears as the enhanced P3f(T) peaked at Tc, 

and dropping to the noise level at T >> Tc.  This phenomenon is qualitatively understood as 

follows.  As the temperature approaches Tc from below, the super-fluid density is reduced, 

and the same perturbation (e.g. applied current) will cause a greater percentage suppression 

in super-fluid density, which leads to a stronger nonlinear response. Qualitative 
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descriptions are given by both the BCS and GL theories mentioned in Chapter 2, that the 

nonlinear response is basically determined by a scaling current density, JNL(t), 
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where J is the applied current density, ns is the super-fluid density, λ is the London 

penetration depth, and t=T/Tc is the reduced temperature. Since JNL(t) goes to zero as tØ1, 

the same amount of perturbation, which is J, produces greater change in the super-fluid 

density; producing a greater nonlinear response in harmonic measurements. [106] 

6.1.1 Fitting and Temperature Normalization of the P3f(T) Measurements 

In our typical third harmonic measurements (Fig. 6.1), such a peaked pattern as a function 

of temperature is certainly observed in all YBCO thin films.[106] We successfully fit these 

harmonic data with the Ginzburg-Landau theory, taking into account that there is a finite 

temperature range, ∆T, over which the phase transition occurs. This finite temperature 

range is modeled as a Gaussian distributed Tc around the average Tc, with a width ∆T. The 

temperature-dependent scaling current density is given in Eq. 2.6. Considering the fact that 

the P3f(T) does not diverge, but shows a maximum near Tc, I must assume that the magnetic 

penetration does not diverge and the scaling current density does not go to zero at Tc. 

Therefore, additional parameters, which are the cut-off penetration depth and current 

density, are introduced as two fitting parameters in this model. 
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    However, we also observed that the magnitudes and widths of the third harmonic 

responses are different for differently doped YBCO thin films. Optimally doped samples 

are fit well with Tc @ 90K and a spread of Tc @ 0.5K (Fig. 6.2(a)). In particular, the data just 

above Tc is fit well, all the way down to the noise floor. However, for the samples that are 

more under doped, the P3f(T) tends to extend to T > Tc, and can no longer be fit with the 

GL theory above Tc (see Fig. 6.2(b); also in Fig. 6.1), and the P3f(T) are more symmetric 

about their maximum value. This suggests the presence of residual σ2 above Tc [91], which 

strongly depends on the driving currents, and allows superconducting screening currents to 

flow.  

 
Fig. 6.2 Typical P3f(T) data fitted by the Ginzburg-Landau theory, assuming finite 
phase transition width ∆T. a) is an optimally-doped film, while b) is an under-doped 
film. As the films are more under doped, the residual P3f extends to T > Tc, which 
cannot be fit by the GL theory anymore, and may indicate residual σ2 above Tc. 
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    Fitting parameters for all samples are listed in Table 6.1. Note that the JNL(0) – fit 

parameter generally increases as the Tc of the film increases. We shall see a similar trend 

from a different (and more reliable) analysis of the data later. 

Table 6.1 Summary of the fitting parameters used in the Ginzburg-Landau model 
for P3f(T) near Tc for most of my samples. The only one that can not be fit by this 
model is MCS48 because of its unusual P3f(T) pattern, shown in Fig. 5.5. 

 Tc (K) ∆T (K) JNL(0) (A/m2) λ(0) (µm) λ(cutoff) (µm) JNL(cutoff) 

MCS4 55.7 1.3 9105.6 ×  0.286 0.45 0.02JNL(0) 

MCS1 63 0.5 9105.8 ×  0.254 1.3 0.019JNL(0) 

MCS50 76.8 1.3 9107.4 ×  0.222 0.43 0.025JNL(0) 

MCS2 85 0.48 10105.1 ×  0.189 1.8 0.019JNL(0) 

MCS3 89.9 0.45 10109 ×  0.12 2.5 0.008JNL(0) 

 

    Presented in Fig. 6.3 and Fig. 6.4 are P3f(T) measurements taken with and without the 

magnetic shielding assembly, where the temperatures are normalized by the Tc’s of the 

samples. Because the reproducibility of P3f(T) near Tc is not sensitive to the presence of the 

magnetic shielding assembly, we include both types of data here.  

    Since the key quantities, such as the super-fluid density, of superconductors change 

rapidly near Tc, and significantly influence the data analysis, it is important to properly 

determine the Tc’s of the samples. Two different ways are used to determine the Tc. One is 
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to use the temperature of the maximum of P3f(T), which shall be referred to as Tc(pk). The 

other is to independently perform the AC susceptibility χ(Τ) measurements on the samples, 

and use the temperatures where the imaginary part of χ(Τ) is peaked as the Tc, which shall 

be referred to as Tc(ac). The data vs. temperature normalized by Tc(pk) is shown in (a), 

while normalized by Tc(ac) is shown in (b) in Figs. 6.3 and 6.4. We find that the Tc(ac) 

values are within the range Tc ±∆T fitting parameter in the GL model for P3f(T) near Tc. We 

expect the ∆T – fit parameter to be smaller than that measured by ac susceptibility because 

the measured sample area by my loop probe is smaller than that of the ac susceptibility 

measurement. Independent of the temperature normalization, a common trend of increasing 

magnitude and width of P3f(T/Tc) in under-doped YBCO thin films is observed (see Figs. 

6.3 and 6.4), which will be discussed in detail later. 
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Fig. 6.3 P3f(T) data taken from variously doped YBCO thin films without 
the magnetic shielding assembly. The data is plot versus the normalized 
temperature (T/ Tc), determined by two different ways. Tc’s in (a) are 
determined by the temperatures where the P3f(T) is at maximum (Tc(pk)). 
Tc in (b) is determined by the AC susceptibility measurements, in which 
the imaginary part of χ shows a peak (Tc(ac)). 
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Fig. 6.4 Similar to Fig. 6.2, P3f(T) data is plotted versus the normalized 
temperature, and (a) is normalized by Tc(pk), and (b) is normalized by Tc(ac). 
However, this data set is taken when the samples were placed in the magnetic 
shielding assembly. 
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    We must be aware that neither method mentioned above is ideal. The former one 

depends not only on the temperature of the phase transition, but also where the magnetic 

penetration depth crosses over to the skin depth and normal metal screening dominates. 

The latter is a global measurements over an area of ~ (3mm)2, which does not give me the 

local Tc of the area I measure with the microwave microscope. Nonetheless, this 

normalization helps us to demonstrate how the nonlinear signals vary near the phase 

transition, and show how the residual P3f extends to T/Tc > 1 with lower doping levels. 

6.1.2 Extraction of JNL from the P3f data 

We must note that to quantitatively measure how nonlinear a mechanism is in a given 

sample, one needs to compare the magnitudes of the scaling current density, JNL.  

Therefore, we need to extract JNL from our third order harmonic data. Though it is difficult 

to decide which temperature normalization is more appropriate via Fig. 6.3 and 6.4, by 

comparing JNL’s extracted from both normalizations, it is found that normalization by the 

AC susceptibility measurements should be more appropriate, as discussed below. 

    Recall that the London penetration depth affects the measured P3f (Chapter 3).  Hence to 

understand our data, we must consider the doping dependence of the London penetration 

depth and remove it from our data. Taking the penetration depth data of thin films and 

crystals from the literature as summarized in Table 5.2, we found that λ0(x) varies 

approximately linearly with x (Fig. 6.5) in our doping regime. Fitting λ0(x) linearly with x, 
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we have, 

    ,31.249.0))((0 xmx −≅µλ   (6.1) 

where x is the hole concentration converted from the Tc using Eq. 5.1. 

 
Fig. 6.5 Linear fit of the zero-temperature penetration depth 
λ(T=0), measured from thin films and single crystals by Gou et 
al. [98] and Hardy et al. [99], versus the doping level x. The solid 
black line shows the expected λ(x) from Uemura’s formula [96]. 

    From Chapter 3, we have  
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where Γ is the figure of merit ~ 31 A3/m2 estimated by HFSS (for a loop probe made of 
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.034” coaxial cable, hanging 12.5µm above the sample, with 12 dBm power output from 

the microwave synthesizer), t is the film thickness, Z0 = 50 Ω is the characteristic 

impedance of the transmission line and spectrum analyzer input, and ω = 2πf is the 

fundamental angular frequency. Since the observed P3f is doping dependent, with the 

information of the doping dependence of λ, we can extract the doping dependent JNL, 
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    Using this equation, the JNL of the films in Fig. 6.3 and Fig. 6.4 are converted at T = 

0.97Tc, where Tc is determined by the peak temperature of P3f (Tc(pk)) and the AC 

susceptibility measurements (Tc(ac)), and presented in Fig. 6.6 as a function of the 

estimated hole concentration x.  

    One of the reasons for choosing T = 0.97Tc is that for T > 0.97Tc the analysis becomes 

very sensitive to the choice of Tc because of the diverging λ(T) at Tc. Since we do not 

measure the local Tc precisely, we would like to extract JNL(x,T) at the lowest possible 

temperature. However, P3f(T) drops to the noise floor below a certain temperature (e.g. both 

MCS2 and MCS3 show no P3f signals above the noise floor below ~ 0.95Tc in Fig. 6.4(b)), 

which means that no meaningful JNL can be extracted below such temperatures. As a result, 

we choose T = 0.97Tc to present the doping dependent trend of JNL(x), because it is where 

all the samples present a healthy P3f signal above the noise floor, but is not too close to Tc. 
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Fig. 6.6 JNL(0.97Tc) converted from the same set of P3f data taken with/without 
the magnetic shielding assembly on variously doped YBCO thin films are 
presented together with the depairing critical current density  Jc(T=0) converted 
from the zero-temperature condensation energy density measurements by Tallon 
et al. (a) and (b) are normalized by Tc(ac) and Tc(pk), respectively. (a) 
demonstrates a clear trend of JNL decreasing with lowering doping level, while 
(b) shows a less clear trend. The blue background schematically represents Tc vs. 
doping. 
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    Another concern is that the assumption J/JNL << 1 is violated as the temperature gets too 

close to Tc because JNL decreases rapidly near Tc. At T =  0.97Tc, the smallest extracted JNL 

(from MCS48) is ~ 109 A/m2, while the maximum applied current density is ~ 5µ108 A/m2 

estimated by HFSS. This suggests that at higher temperatures, the assumption J/JNL << 1 

will be violated at least in the center of the applied current distribution for the most under-

doped samples. This concern also suggests that 0.97Tc is a preferable temperature for 

analysis to find the trend of JNL(x). 

    Returning to Fig. 6.6, the extracted JNL(x) taken from data with and without the magnetic 

shielding assembly are presented. While the JNL extracted from the results normalized by 

the Tc(pk) do not show such a clear trend with varying doping levels (Fig. 6.6(b)), the JNL 

from the results normalized by the Tc(ac) clearly indicate that the scaling current density, 

which is the de-pairing critical current density for the NLME, decreases with decreasing 

hole concentration (Fig. 6.6(a)). The only exception is MCS50, whose doping level is x @ 

0.12. The harmonic measurements of this sample show broader patterns than expected, but 

the cause of this exception is not clear to me. Clearly the trend for P3f(x) is not affected by 

the absence or presence of the magnetic shielding assembly. 

    Recent work on specific heat of variously doped YBCO poly-crystals [88, 89] 

demonstrated that the zero-temperature condensation energy density U(0) decreases with 

decreasing doping level. Following the argument in the earlier section (5.2.2), we can 
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conclude from this work that the intrinsic de-pairing critical current density should 

therefore be smaller in under-doped YBCO.   

    The comparison between the JNL(0.97Tc) from our harmonic measurements and the Jc(0) 

from Tallon’s specific heat measurements is also shown in Fig. 6.6. Consistency between 

the two results in the overall trend is shown.  It is noted that the magnitudes of JNL(0.97Tc) 

is much smaller than Jc(0), which is expected since the de-pairing critical current density 

decreases to zero as the temperature approaches Tc. 

6.1.3 Note on the choice of λ(x,T) 

As mentioned in previous sections, the doping- and temperature-dependence of λ(x,T) is 

important in our extraction of JNL. There are two assumptions made about λ(x,T). One is 

that the temperature dependence is based on the mean-field theory (GL) rather than the 3D-

XY theory. This assumption is tested by using Vigni’s model described in Chapter 2 to 

calculate the expected P3f(T) from the GL theory and 3D-XY theory for λ(T). We find that 

the 3D-XY theory produces a much narrower peak pattern in P3f(T) than the GL theory, and 

is very difficult to fit to our experimental data. Therefore, the temperature dependence of 

λ(x,T) based on the GL theory is more appropriate in our case. 

    Secondly, the doping dependence of λ(x,0) is obtained by fitting the experimental data 

from the literature. Rather than using Uemura’s formula [96], I fit the data with a linear 

function of doping. However, even if Uemura’s formula (Fig. 6.5) is used to fit these data, 
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the difference in λ(x,T) will only magnify the trend in JNL(x), which changes by a factor of 

~ 5 with a linear function of λ(x) in our doping range. 

6.2 The unusual P2f peak seen near Tc in all under doped films 

As demonstrated earlier in this chapter, the second harmonic also shows astonishing 

features near Tc in under doped YBCO thin films, which are not expected from the NLME. 

Similar to what I’ve done to the P3f data, the P2f data is also normalized by the two 

alternative Tc values mentioned previously. As shown in Fig. 6.7, the P2f data normalized 

by Tc(pk) shows residual signals above Tc (Fig. 6.7(a)), while the onset of P2f aligns very 

well at Tc if normalized by Tc(ac) (Fig. 6.7(b)). Since the sensitivity of my microscope to 

TRSB nonlinearities relies on the large screening currents flowing in superconducting state 

(but largely absent in the normal state), I should be sensitive to TRSB nonlinearities (in P2f 

signals) only at and below Tc. Therefore, this serves as another indication that 

normalization by Tc(ac) is more appropriate. On the other hand, the absence of P2f observed 

above Tc(ac) suggests that P2f comes from the establishment of long-range phase 

coherence. This clearly contrasts with the P3f(T) data which extends well above Tc, and 

does not require the establishment of long-range phase coherence. 
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Fig. 6.7 P2f(T) data near Tc normalized by the Tc’s of the oxygen-
doped samples. (a) is normalized by Tc(pk), and (b) by Tc(ac). 
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6.2.1 Extraction of JNL’ from P2f data 

As an attempt to understand this peak feature, I propose the hypothesis for second 

harmonic generation which is described in detail in chapter 3. This proposal assumes that 

the modulation of the super-fluid density by currents is now modified by the presence of 

the spontaneous currents caused by the responsible TRSB mechanism, and the modulated 

super-fluid density becomes 
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where  is the scaling current density which in general (phenomenologically) 

represents the TRSB nonlinearities. 
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    Following the same algorithm described in chapter 3, the JNL’(T) is derived from the P2f 
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where Γ’ is the figure of merit ~ 1.1 A2/m estimated by HFSS (for a loop probe made of 

.034” coaxial cable, hanging 12.5µm above the sample, with 12 dBm power output from 

the microwave synthesizer), t is the film thickness, Z0 = 50 Ω is the characteristic 

impedance of the transmission line and spectrum analyzer input, and ω = 2πf is the 

fundamental angular frequency. Including the doping-dependent penetration depth λ(x,T), 
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we can extract JNL’ via  
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for variously doped YBCO thin films, as shown in Fig. 6.8. 

 
Fig. 6.8 JNL’ at 0.97Tc extracted from P2f(T) data of variously doped 
YBCO thin films using Eq. 5.6. The temperatures are normalized by 
Tc(ac) (circles) and Tc(pk) (triangles) in the two sets of data, 
respectively. 

    What is shown in Fig. 6.8 are the JNL’ extracted from the P2f(T) data taken with the 

magnetic shielding assembly, so that the effect of induced vortices by external magnetic 

fields is minimized. The JNL’ is calculated at T = 0.97Tc, the same as for JNL in the previous 
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section, for comparison. It is noted that the JNL’ calculated from the data normalized by 

Tc(ac) shows a trend of generally increasing as the doping level is decreased, while the 

other normalization doesn’t show any clear trend. As in the discussion of JNL(x), the 

discussion below will only focus on the analysis normalized by Tc(ac). 

    The trend of increasing JNL’ for lower doping levels can be understood as follows. As 

mentioned earlier, JNL’ was proposed phenomenologically to account for a second 

harmonic response. However, it can be related to the physically-motivated spontaneous 

current JTRSB generated by an unknown TRSB mechanism as TRSBNLNL JJJ 2' 2=  (Eq. 

3.10). By converting the JNL and JNL’ data into JTRSB, we can see a clear decreasing trend of 

JTRSB upon lowering the doping level, which is shown in the inset of Fig. 6.9. This suggests 

that the magnitude of the spontaneously generated TRSB current density decreases with 

decreasing doping, similar to the trend expected for the intrinsic de-pairing critical current 

density, also shown in the inset of Fig. 6.9. 

    More importantly, we can directly determine JTRSB(T) from the raw data, independent of 

the choice of Tc, and how we define the doping and temperature dependence of λ. From Eq. 

6.3 and Eq. 6.5, we have  
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where t is the film thickness, and Γ and Γ’ are assumed to be ~ 31 A3/m2, and 1.1 A2/m, 

respectively. Note that the magnitude and temperature dependence of JTRSB is uniquely 

determined by the P2f(T) and P3f(T) measurements with a minimum of assumptions. 

 
Fig. 6.9 JTRSB vs. T/Tc(ac) for variously doped YBCO thin films. JTRSB of all 
samples shows a clear trend of dropping to zero at, or at least near, Tc. The 
magnitude of JTRSB is also doping dependent. Shown in the inset is the JTRSB at 
0.97Tc, which shows a clear decreasing trend in lower doping levels. 
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    The main part of Fig. 6.9 shows the temperature dependence of JTRSB deduced from Eq. 

6.6 of variously doped YBCO thin films over the temperature range 0.97 ~ 0.99Tc. To 

illustrate the temperature dependence, we use the Tc(ac) to normalize the temperatures in 

the data. (The reason for the lower limit of 0.97Tc is that either the P2f(T) or P3f(T) data 

drops to the noise floor at that temperature so that the derived JTRSB does not make sense 

below such temperatures.) In addition to the trend of decreasing JTRSB at lower doping 

levels, an astonishing common onset of JTRSB(T) is observed at, or just below, Tc(ac). The 

development and growth of JTRSB(T) below Tc is reminiscent of the development of a TRSB 

order parameter as described by Sigrist [58]. It is similar to the measurement of a 

spontaneous internal magnetic field as measured in Sr2RuO4 by Luke et al. with muon spin 

relaxation [107]. 

    We are aware of the fact that our microscope is not sensitive to nonlinearities in the 

normal state. Therefore we cannot make a direct comment about Varma’s proposal of a 

spontaneous current flowing along Cu-O bonds with an onset at T* > Tc. However, the 

remarkable onset of JTRSB(T) near Tc suggests that the P2f signal we measured near Tc is 

associated with the establishment of long-range phase coherence at Tc. Therefore, it seems 

unlikely that non-zero JTRSB(T) exists at temperatures above Tc. One support of this 

interpretation is the observation of spontaneous magnetic moments (“vortices with 

fractional flux quantum”) in YBCO films at T ≤  Tc by Kirtley et al. [108] using their 

scanning SQUID microscope. They attributed these “vortices” to the pinning of a vortex 
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tangle because of the disorder present in the film, or to local broken time-reversal 

symmetry because of non-ferromagnetic defects found in the film. This suggests that JTRSB 

might be the circulating currents associated with the formation of vortices. In addition, the 

increase in the magnitude of JTRSB upon cooling below Tc is consistent with the results of 

Kirtley, et al. [108] that show an increase in flux strength in the “fractional vortices” 

observed in (001) YBCO films cooled in zero field. This would explain the clear onset at Tc 

due to the establishment of long-range phase coherence required to create long-lived vortex 

excitations. On the other hand, other attempts to generate spontaneous flux after a quench 

through Tc seem to require enormous quench rates (~ 108 K/s) to produce measurable flux 

[109]. 

    Secondly, the magnitude of JTRSB is ~ 107 A/m2 in the optimally doped sample near Tc, 

and this magnitude decreases as the doping level decreases. Note that this is significantly 

less than JNL(0.97Tc), by several orders of magnitude. If we naively assume that the JTRSB is 

proportional to the weak-link critical current density, the trend I observe is consistent with 

measurements of the critical current density Jc of 23º mis-oriented YBCO bi-crystal grain 

boundaries as a function of oxygen doping [110]. There they see a drop of Jc by a factor of 

~ 100 upon going from optimally doped YBCO to oxygen under-doped YBCO with a Tc of 

~ 50K. We do not have 23º mis-oriented bi-crystal grain boundaries in our films, but low-

angle junctions should have a similar trend with doping. 
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    In addition, I can estimate the magnetic fields on the sample surface induced by JTRSB. 

Since the thickness t of my films is ~ 1000Å, which is much smaller than the penetration 

depth near Tc, I can assume that the current is flowing uniformly throughout the thickness. 

The magnetic field on the surface is estimated as 

.  mGTtJHB TRSB 6.1226.11010104 777
00 =≈×××≈== −− µπµµ

    The primary method to measure spontaneous fields in superconductors is muon spin 

relaxation (µ-SR) [107,111]. The published sensitivity limits of these measurements are 

800 mG [111] and 100 mG [107]. These results suggest that my technique has superior 

sensitivity for the detection of spontaneous fields/currents in the superconducting state. 

6.3 Power dependence measurements of P2f and P3f 

To develop a clearer picture about the origins of the P2f and P3f signals near Tc, we must 

check the power dependence. Different power dependent behaviors are expected for the 

different nonlinear mechanisms. For example, although an enhanced P3f is expected in d-

wave superconductors at low temperatures (Chapter 2), a transition from power-3 

dependence to power-2 of P3f(Pf) is expected upon cooling through ~ 0.01Tc [32]. 

Therefore, the power dependence of the measured harmonic signals becomes another 

important source of information in determination of the responsible nonlinear mechanism.  
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    The third harmonic generation is attributed to the NLME near Tc in my work. This leads 

to an expected  (power-3 dependence), which can be clearly seen from Eq. 3.6. 

On the other hand, my proposal for the TRSB scaling current density J

3
3 ff PP ∝

NL’ should lead to 

the conclusion of  (power-2 dependence) according to Eq. 3.12.  2
2 ff PP ∝

    I measured both the P2f(Pf) and P3f(Pf) around Tc before I obtained the magnetic 

shielding assembly. While the P3f(Pf) data shows a very stable and consistent power-3 

behavior in all samples, the P2f(Pf) data was not that reproducible. While some of the 

P2f(Pf) data show reproducible power-2 dependence on Pf, variations from power-2 

dependence were observed. Shown in Fig. 6.10 are the P2f(Pf) and P3f(Pf) of MCS1 and 

MCS4 taken at temperatures around their respective Tc’s. Consistent and stable power-3 

dependence in P3f(Pf) is shown, while the P2f(Pf) is much noisier and the power-law 

dependence is not so easily defined (slopes range from ~ 1.6 to 2). 

    One might consider heating as a problem in the power-dependence measurements, 

especially at higher power. This issue has been considered by comparing P3f(T) near Tc 

measured above non-GB and GB shown in Chapter 4. Since the GB is more dissipative 

than plain YBCO, if the heating effect is significant, I should observe a significant shift in 

the P3f (T) peak. However, I only observe less than 0.5K shift of Tc, which can be caused 

by inhomogeneity of the film. Hence I conclude that heating is not a significant issue in my 

measurements. 
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Fig. 6.10 (a) and (b) are P2f(Pf) and P3f(Pf) of MCS4, and (c) and (d) are 
P2f(Pf) and P3f(Pf) of MCS1 near Tc. Fitting for the slope is also shown 
with each data set. This set of data was taken before the installation of 
the magnetic shielding assembly. 

    Since magnetic vortices are potentially involved in these measurements, I intended to 

repeat these power-dependence measurements after the installation of the magnetic 

shielding assembly. However, at the time I started to measure P2f(Pf) and P3f(Pf), most of 

the samples had degraded severely. One signature of the severe degradation is very strong 

P2f and P3f signals persisting from near Tc to the low temperature region. This was not 
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observed when I took the magnetically shielded P2f(T) and P3f(T) data presented in previous 

sections. Secondly, the non-monotonic power-dependence is not only observed in P2f(Pf), 

but also in P3f(Pf), as shown in Fig. 6.11 in which the data of MCS1 and MCS4 are 

presented. This is a clear indication that the Josephson nonlinearity dominates the nonlinear 

response [105] for I have also observed a similar power-dependent behavior on the bi-

crystal YBCO thin film (Fig. 4.2). 

 
Fig. 6.11 After the installation of the magnetic shielding assembly, most of 
my samples have degraded and the harmonic measurements look like this. (a) 
and (b) are P2f(Pf) and P3f(Pf) of MCS4, and (c) and (d) are P2f(Pf) and P3f(Pf) 
of MCS1. Non-monotonic patterns are observed in P2f(Pf), and in some cases, 
in P3f(Pf) as well. P3f(Pf) also shows unexpected curving away from power-3 
behavior. 
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    The only sample whose P2f(Pf) and P3f(Pf) remained well behaved is MCS2. Shown in 

Fig. 6.12 is the P2f(Pf) and P3f(Pf) of MCS2 at temperatures around Tc, which show close to 

power-2 and power-3 dependence respectively. Using this data for MCS2, I extracted JTRSB 

at different power levels to see if the procedure defined by Eq. 6.6 is robust. I find that the 

JTRSB values are constant, independent of input power, to within ± 10%. This demonstrates 

that the nearly assumption-free determination of JTRSB is robust and valid. 

 
Fig. 6.12 P2f(Pf) and P3f(Pf) of MCS2 taken with the magnetic shielding 
assembly. Power-3 dependence is clearly shown in P3f(Pf), and the 
power-law dependence of P2f(Pf) ranges from ~ 1.73 to 1.8, which is 
reasonably close to 2. 

6.4 Conclusion 

In this chapter, I have demonstrated a systematic study of the doping dependent 

nonlinearities of high-Tc superconductors near Tc using a set of variously under doped 

YBCO thin films. The analysis of the third harmonic generation, which we believe is 

mainly caused by the NLME near Tc, leads to a conclusion of enhanced NLME (smaller 
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JNL) for lower doping levels. This is in agreement with a completely independent study of 

the zero-temperature condensation energy of variously doped YBCO crystals by Tallon et 

al.  

    The second harmonic generation near Tc is interpreted as the manifestation of a 

spontaneous current JTRSB generated by an unknown TRSB mechanism, as described in 

Chapter 3. One prediction of this model is the power-2 dependence of P2f(Pf), which is 

observed in the power-dependence measurements. It is important to remember that the 

analysis for extracting JTRSB(T) does not depend on the doping and temperature dependent 

magnetic penetration depth λ(x,T) or a choice of Tc, but solely on the ratio of the measured 

P2f and P3f, and the film thickness, which are all well measured. From the analysis, a 

remarkable onset of JTRSB(T) is shown at, or at least near, Tc. In addition, the magnitude of 

JTRSB becomes progressively smaller in more under doped YBCO thin films. These 

observations are consistent with a weak-link vortex mechanism for the TRSB, although this 

is by no means definitive. 

    It is also noted that the model for the second harmonic generation is a phenomenological 

model, lacking of solid theoretical background. However, if a prediction for the current 

dependence of λ due to TRSB nonlinearities is developed, it can be compared to the 

analysis presented in this chapter to quantitatively address the responsible nonlinearity. 
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CHAPTER 7 

SUMMARY AND FUTURE WORK 

7.1 Summary 

Our work started with the development of the first scanned-probe magnetic near-field 

microwave microscope. This microscope was used to image the local permeability of 

different materials and the variation of the ferromagnetic-resonant field in a CMR material. 

Descending from the permeability imaging near-field microwave microscope, our 

nonlinear near-field microwave microscope has shown its capability of spatially identifying 

local nonlinear sources via measurement of the local harmonic generation from the YBCO 

bi-crystal grain boundary at ~ 60K. Locally enhanced second and third harmonic signals 

are observed near the grain boundary, and the magnitudes and spatial distributions of P2f 

and P3f are well modeled by the Extended Resistively Shunted Josephson (ERSJ) array 

model. The observed P2f is attributed to the vortex dynamics driven by the microwave 

signal along the grain boundary. The ERSJ model simulated by WRSpice® demonstrates 

how the vortices/anti-vortices are generated and move along the grain boundary. These 

result in a time asymmetric magnetic field configuration along the boundary during a single 

RF cycle, and lead to the observed P2f signal. 
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    I further employed this microscope to study the doping-dependent nonlinearities in the 

under-doped high-Tc superconductors (HTSC). The samples I studied are YBCO thin films 

deposited on NGO and STO substrates using the PLD technique. The oxygen deficiency of 

the samples was adjusted later by Ben Palmer [90] using his re-annealing apparatus. To 

quantitatively address the nonlinear mechanisms responsible for the measured harmonic 

signals near Tc, I introduce the scaling current density JNL(x,T) and used Booth’s algorithm 

to derive this quantity from our third harmonic data. By systematically analyzing P3f data 

from variously doped YBCO thin films, I found a decreasing trend for JNL(x,T) as the 

doping level is decreased. The P3f signal near Tc is attributed to the intrinsic NLME of 

HTSC in my experiment, therefore the JNL(x,T) is the de-pairing critical current density 

Jc(x,T). The trend for Jc(x) found in my work is consistent with an independent work by 

Tallon et al. measuring the zero-temperature condensation energy as a function of doping 

[88, 89]. 

    In addition to the third harmonic generation, I also observe significant second harmonic 

generation near Tc in under-doped YBCO thin films, which indicates the presence of a 

time-reversal symmetry breaking (TRSB) nonlinear mechanism. To quantitatively address 

such a nonlinear mechanism, I introduce a spontaneously flowing current JTRSB, which 

manifests in the NLME as a J/JNL’ term, and makes the penetration depth linearly 

dependent on the external current. Extending Booth’s algorithm to the linear-current-

dependent term, I extract JNL’ and found an increasing trend of JNL’ as the doping level is 



 

 163 
 
 
 
 

decreased.  On the other hand, JTRSB, whose extraction is solely dependent on knowledge of 

the film thickness, the input power, and the ratio of the measured P2f and P3f, shows a 

remarkable onset at Tc, and a trend of decreasing in magnitude as the doping level is 

decreased. This strongly suggests the presence of a doping dependent TRSB nonlinear 

mechanism below Tc, though the origin of this mechanism is not yet clear. 

7.2 Future Work 

Although my microscope has demonstrated its distinctive ability of locally measuring 

nonlinear properties, its sensitivity to nonlinearities, and spatial resolution, can be further 

improved. 

    As I mentioned in Chapter 1, I gave up driving the probe in a resonant mode so that I can 

have the capability of broadband measurements. However, by doing this, I also gave up the 

amplification of signals from the resonant mode, which is represented by the Q factor of the 

resonator. The typical Q factor of a coaxial transmission line resonator is about a few 

hundred, which means 20~30 dB of gain. I use two microwave amplifiers with total gain ~ 

50 – 60 dB to compensate this trade-off. However, both amplifiers are broadband 

amplifiers, which amplify a lot of signals beyond the narrow bandwidths that I am 

interested and lift up the noise floor a lot (~ 40dB). Truly narrowband amplifiers are 

suggested to reduce the noise floor. More details about other limitations that this 

microscope faces, and suggested improvements are described below. 
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7.2.1 Sensitivity to the Nonlinearities 

First and foremost, we would like to improve the sensitivity of this microscope to weaker 

nonlinear signals (i.e. signals from larger JNL and JNL’). As demonstrated in Chapter 3, both 

P2f and P3f signals are proportional to λ4, which is a diverging quantity near Tc. This means 

that my sensitivity to nonlinearities (as a function of temperature) is enhanced dramatically 

near Tc, but much lower at low temperatures. This is another reason why I observe a clear 

and healthy P3f peak near Tc, in addition to the sample being more nonlinear near Tc. 

However, for lower temperatures (e.g. T < 0.9Tc), we do not have this advantage of 

superior sensitivity. At lower temperatures, the largest JNL I can measure is ~ 1010 A/m2, 

which is still much smaller than what is expected from the intrinsic NLME. Therefore, 

improving the sensitivity is the key to studying the intrinsic nonlinearities of 

superconductors at lower temperatures.  

    According to the arguments in Chapter 3, by reducing the film thickness, increasing the 

input frequency, and enlarging the figure the merit, the sensitivity of the microscope to 

nonlinearities can be greatly improved. However, the film thickness is more or less limited 

by the deposition technique and the tendency for film quality to degrade as the thickness 

decreases below about 100 nm. The input frequency is also limited by the frequency band 

defined by the existing low- and high-pass filters. These leave us with no other way to 

improve the sensitivity than by enlarging the figure of merit (Γ, Γ’) of the microscope.  
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    From the calculations of Γ and Γ’ by the HFSS software and my analytical model 

(Chapter 3), I find that both Γ and Γ’ increase greatly upon reducing the loop size and 

bringing it closer to the sample. This suggests that by making the probe smaller and 

smaller, we will have better and better sensitivity. However, the smallest commercially 

available coaxial cable (with compatible SMA connector) is UT-20, whose outer conductor 

outer diameter is 0.020”, which is not much smaller than the current probe size (0.034” 

outer diameter). In addition, at the time we made the loop probe, there was no non-

magnetic UT-20 available commercially. Though it is available now, to make high quality 

connections between UT-20 coaxial cables and connectors is a very challenging task. 

Therefore, to push this approach to the limit, a lithographically patterned loop which can be 

as small as 15 µm in diameter was suggested. I have designed such loops (shown in Fig. 

7.1) for use with UT-34 (0.034” outer diameter) coaxial cable in my piezo-positioning low-

temperature microwave microscope. HFSS calculations show that the microscope figure of 

merit increases substantially to Γ ~ 1.3µ106 A3/m2 for 1W input power. Dragos Mircea has 

fabricated these loops for his cryogenic microwave microscope. This approach will also 

greatly improve the spatial resolution, which is on the order of the loop diameter. 
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Fig. 7.1 (a) and (b) Schematic of a patterned loop probe on a sapphire 
substrate. (c) the surface current |K| distribution simulated by HFSS 
for a 20µm diameter loop probe at 6.5 GHz. 
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7.2.2 Spatial Resolution 

In the field of microscopy, better spatial resolution is always desired. The spatial resolution 

of our currently used microscope is not good enough for identifying much finer structural 

defects or impurities in HTSC thin films, which are on the order of a nano-meter. Although 

the spatial resolution of the current microscope can be improved to the order of 10 µm as 

mentioned previously, even much better spatial resolution is desired. 

    Usually, such ultra-high spatial resolution scanning microscopy is achieved by using 

tunneling mechanisms (e.g. Scanning Tunneling Microscopy, or STM) or force-controlling 

mechanisms (e.g. Atomic Force Microscopy, AFM, and Magnetic Force Microscopy, 

MFM). I have attempted to combine the nonlinear near-field microscope with the tunneling 

mechanism, which controls the tip/sample separation through the feedback on the tunneling 

current. Due to the extremely weak coupling between the probe and sample, I have to apply 

relatively high microwave power (~ +15 dBm) to observe any harmonic generation. 

However, we found that by applying such high power microwave signals through the 

tunneling barrier (which is itself a nonlinear circuit element), we introduce significant 

amounts of rectified currents, which add to the tunneling current, and interfere with the 

mechanism controlling the probe/sample distance via the tunneling current. I tried to pulse 

the input microwave signals (as low as 10% duty cycle). The rectified current is reduced 

(less tip-withdraw), but still severe enough, and the nonlinear signals are smaller. I show in 

Fig. 7.2 how the tip withdraws as a function of the input microwave power (continuous 
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wave signals). In addition, I note that the color of the sample surface changes locally under 

such high input microwave power, and indicates some unknown contamination caused 

probably by local heating. Therefore, the technical challenge here is to take advantage of 

the very sensitive distance control mechanism of STM (by applying low enough input 

microwave power < -15 dBm) without losing the sensitivity to the nonlinear signals. 

 
Fig. 7.2 The extension of z-piezo as a function of input 
microwave power taken with an STM microwave 
microscope. Smaller numbers in z-position means that 
the tip is withdrawing farther away from the sample. 

    To achieve this goal, resonant techniques are suggested to amplify the desired harmonic 

signals while the input microwave power is limited to < -15 dBm. I designed and built a re-

entrant microwave cavity which has resonant modes around 14 GHz and 19 GHz with 
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different Q factors and field configurations as shown in Fig. 7.3. By applying microwave 

signal through the STM tunnel junction at one half or one third of the resonant frequency, 

the second or third harmonic signal is amplified by the Q factor, and picked by a magnetic 

loop probe. We also note that some of the resonant modes have electric fields concentrated 

at the end of the tip, and some have magnetic fields. Therefore, we can sensitively detect 

through either electric or magnetic coupling to the sample by choosing the appropriate 

mode. 
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Fig. 7.3 Schematic of the re-entrant cavity. On the bottom are the field 
configurations at resonant modes ~ 14 and 19 GHz, simulated by HFSS. 
Either electric or magnetic fields are concentrated in the small volume 
near the tip in each mode. 
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    Shown in Fig. 7.4 is an STM topography image of a 30º mis-orientated YBCO bi-crystal 

grain boundary taken without inference from microwave signals at room temperature. The 

sample is the one discussed in Chapter 4, and the islands in the figure are expected to be a-

axis grains out-grown on a c-axis surface. Nonlinear responses are expected at the 

boundaries between the a-axis grains and the c-axis film surface. Therefore, as long as high 

sensitivity can be maintained via the resonant technique at low input microwave powers, 

we expect to be able to measure the local nonlinear response at ultra-high spatial resolution, 

and correlate the nonlinear sources with the topographic features. The spatial resolution 

perhaps will be as good as that of STM, which is on the order of 1 nm.[9] 
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Fig. 7.4 STM topography image of a 200nm thick c-axis 
YBCO film on a STO 30º mis-oriented bi-crystal 
substrate. The blue line roughly marks the bi-crystal 
grain boundary. Topographic features are possibly a-axis 
grains, which rotate by 30º across the grain boundary. 

    In addition, I have been able to measure the P2f and P3f via the analog output on the 

spectrum analyzer as shown in Fig. 7.5. This allows me to combine the local harmonic 

measurement with the electronics controlling the STM tunneling and data acquisition 

process, so that the images of the topography, P2f and P3f can be simultaneously taken. 

Although the topography data is not relevant at this moment because the STM tip 

withdraws due to the rectified currents, this data shows that we can simultaneously take 
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harmonic data and STM images. Therefore, by implementing the suggested modification 

discussed above, I believe this microscope has great potential in locally determine the 

nonlinear sources on the nano-meter scale.  

 
Fig. 7.5 Simultaneously taken harmonic data with STM imaging. (b) is 
the P3f data taken while taking the STM image of a Tl2212 film in (c) at 
95K < Tc (~ 105K). (a) shows the comparison between the P3f data and 
the topography along the blue dashed line in (b) and (c). The input 
microwave frequency is ~ 6.5 GHz. 

7.3 Conclusion 

Our nonlinear near-field microwave microscope has proven to be a promising tool to 

measure the local nonlinearities of HTSC. By improving the sensitivity, it may prove very 
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useful in studying and deepening our understanding of the fundamental physics of HTSC 

(e.g. low temperature NLME and the ABS nonlinearity in d-wave superconductors). By 

improving the spatial resolution to the order of ~ 1 nm, it may prove useful in identifying 

and characterizing the properties of the extrinsic nonlinearity due to structural defects or 

impurities. 
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APPENDIX A 

FOURIER TRANSFORMS USED IN DATA ANALYSIS AND 

MODEL CALCULATIONS 

A.1 Data Analysis – AC Circuit with a Nonlinear Inductor 

The problem assumes an AC current source connected to a nonlinear (current-dependent) 

inductor. The details of this problem are described in Chapter 3. In the more general case, 

which is to have both the linear and quadratic current dependence in the inductor, the 

equation describing this circuit becomes, 

dt
tdItLI

dt
tdItIL

dt
tdIL

dt
tdILtV )()()()(')()()( 2

0 ∆+∆+== , (A.1) 

where  is the current-dependent nonlinear inductor, V(t) is the 

voltage across the inductor, and the driving current 
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function of I(t) into Eq. A.1, we have  
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Because of the nonlinear inductor, V(t) contains higher harmonic terms, and can be 

expressed as  
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where  and  are the coefficients of n-th order in-phase (sin) and out-of-phase 

(cos) terms. To obtain these coefficients, Fourier Transforms are used: 
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The calculated coefficients are listed in Table A.1. 

Table A.1 Fourier coefficients in Eq. A.3 calculated via Eq. A.4.  
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A.2 Model Calculation – Extracting Harmonics from Numerical 
Simulations 

In Chapter 4, I describe two models to understand the harmonic generation from the YBCO 

bi-crystal grain boundary. One is to use Mathematica™ to solve the circuit of an AC 

current source driving a resistively shunted Josephson junction. The equation governing 

this circuit is  
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where )(0 tSinI ω  is the driving current, 0Φ  is the flux quantum, R is the shunted resistance, 

Ic is the critical current of the Josephson junction, and ∆γ is the gauge invariant phase 

difference across the junction. Since what we measure is the potential difference generated 

on the sample, the voltage across the junction, which is proportional to the derivative of ∆γ, 

is the desired quantity: 

dt
tdtV )(

2
)( 0 γ

π
∆Φ

= . (A.6) 

V(t) contains higher order harmonic terms, and can be expanded as 

. (A.7) 

It is noted that V(t) only contains odd order harmonics. This is because Eq. A.5 describes a 

single Josephson junction, which preserves the Time-Reversal Symmetry [44].  
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    Since V(t) is obtained by numerically solving Eq. A.5 with Mathematica™, there is no 

analytical form for the coefficients in Eq. A.7. Additionally, Mathematica™ has difficulty 

performing the Fourier Transforms in Eq. A.4 numerically due to the oscillating nature of 

the simulated results. Therefore, I perform the Fourier Transforms by summations instead 

of integration: 
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where ∆t is the time step in the summation, which determines how close the summation 

comes to the integral. In most of my calculations, I use ∆t = T/1000, which is a 

compromise between the time required for calculation and the accuracy of the calculation. 

The second and third harmonic generations from a Josephson junction simulated by 

Mathematica™ are calculated using Eq. A.8, and ( ) 0
2

,2
2

,22 2ZVVP bfaff +=  and 

( ) 0
2

,3
2

,33 2ZVVP bfaff += . Of course, the probe/sample coupling, the attenuation and 

amplification through the coaxial transmission line system are also included in the 

calculation. 

    Another model used in Chapter 4 is the Extended Resistively Shunted Josephson 

junction model simulated numerically by WRSpice™. Details of how to use WRSpice™ 

can be found in Appendix B. An inductively coupling Josephson junction array is built in 

WRSpice™ for simulation, and WRSpice™ can calculate and output the potential 

difference across each junction. For the same reason mentioned previously, the coefficients 

of higher order terms in the Fourier expansion are extracted numerically using Eq. A.8. 
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APPENDIX B 

HOW TO USE WRSPICE® SOFTWARE? 

B.1 Introduction to WRSpice® Simulations of Extended Josephson 
Junctions 

WRSpice® is a program developed by Steve Whiteley based on Spice3, which was 

developed in Berkeley, with additional models for Josephson junctions based on sine-

Gordon equation. It is designed to simulate circuits with superconducting devices made of 

Josephson junctions, for instance, Superconducting Quantum Interference Devices 

(SQUID). Most conventional devices, for example, resistors, inductors, capacitors, current 

and voltage sources, and some other semi-conductor devices are also available in 

WRSpice®, though it’s not as extensive as in the most advanced conventional Spice 

program. WRSpice® can perform different types of simulations. The one that I used in my 

work is “transient analysis”, which is a time-based analysis, and simulates the circuit as it 

runs in real time. Another analysis called “frequency analysis”, which simulates a circuit as 

frequency is varying, is also available. It is worth noting that WRSpice® alone does not 

have schematic design capability, though it is capable of plotting and text editing. To 

graphically enter the circuit schematics, another program, Xic®, is required to work with 

WRSpice®. However, in my work, I didn’t use Xic® at all. This is because in my 

simulations I need to vary a huge amount of variables for each simulation in a systematic 



 

 180 
 
 
 
 

way, but the batch mode capability in Xic® is very limited, and not user-friendly. As a 

result, it is much easier to work in WRSpice®, which has only a text-editing interface. 

WRSpice® is under continuous development by Steve Whiteley, and the updates are 

obtained on-line. It was originally developed in the UNIX environment, and the version we 

have has been modified for Windows systems. We are informed by Steve Whiteley that the 

NT based Windows system is preferred because of its better ability in managing memory 

usage. Since the circuits I simulate are very large, I noticed that WRSpice® is a very 

resource-demanding program; hence memories (both physical and virtual) and speed of the 

computer become crucial to its performance. For detailed information about this program, 

including WRSpice® and Xic®, manuals for each of them are available in the lab. There is 

also on-line help available, which may be helpful at times. In the rest of this section, I 

explain in detail how I use this program to simulate my model circuits. It should serve as a 

good start for people, who are new to this program. 

B.2 The Circuit Script File 

All files used in WRSpice® are any plain text files. The “Circuit” file is denoted by “.cir”. 

Refer to “ERSJ51.cir” as an example as we proceed to construct such file. 

a) The first line in ”ERSJ51.cir” is “*title: the subcircuit of an ERSJ cell.” started 

with a “*”. This line is usually the description of the circuit file, and will be printed 

on the screen while the file is called by WRSpice®. This line is optional. 
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b) Then we need to specify the special devices used in the circuit model. For the 

common devices, for example, voltage sources, current sources, resistors, 

capacitors, inductors, and so on, no specification is required. However, for 

Josephson junctions, we need to load the device model using the command line 

“.model”. For Josephson junctions we used, the device model is jj1, and there are 

device parameters associated with the model, which are specified through: 

“jj(rtype=1, cct=1, icon=10m, vg=2.8m, delv=0.08m,+ icrit=.01m, r0=1, rn=20, 

cap=.1p)”.The meaning of each parameters can be found in the device models in 

WRSpice manual. The important parameters are “icrit (critical current, set to 

10µA)”, “rn (shunt resistance 20Ω)”, and “cap (shunt capacitance 0.1pF)”. 

c) One way of constructing a huge repetitive circuit array is to construct a simple sub-

circuit, which acts as a user-defined black box. And then use this box in further 

circuit construction.  

To build a sub-circuit, use the command line “.subckt cell” followed by the nodes 

of this “black box”. If there are any variables which we want to vary in this black 

box, we also declare them in this line with the default values, so that if there are no 

values assigned to the variables, the default values will be used. Construction of this 

“black box” is ended by the line “.ends cell”. 

In our sub-circuit, a Josephson junction (b1), a resistor (r1), an AC current source 

(i1), and 2 inductors (l1 & l2) are used. The numbers are to label the devices, and 
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the “letters” are the convention in WRSpice® for calling each device. As the result 

of this construction, there are 5 nodes for this “black box”, including 4 nodes for 

physical devices, and 1 node for the phase difference across the Josephson junction. 

To extract information of the phase difference of each junction, this phase node 

must have different names of phase (e.g. phase1, phase2, etc) for each sub-circuit. 

Since in ERSJ51.cir, all phase nodes are given the same name, therefore, the phase 

information is not available. However, all other information, for instance, the 

voltage differences across devices and currents flowing through devices, are 

unaffected. Therefore, only integration of the voltage differences across the junction 

over time, ∫Φ
=∆

t
dttVt

0
0

')'(2)( πγ , is needed to recover the phase information 

without the information from the phase nodes. 

d) Then a command line “.tran .5p 25n” is used to specify the type of analysis, which 

is “transient analysis” in this case. This is a “time” based analysis, which calculates 

variables as function of time. The analysis is performed for the time period from 

t=0s to t=25ns with time step ∆t=0.5ps. The number of data points, which is 

25ns/0.5ps=50000 in this case, determines the resulted data size of the simulation. 

e) The rest of the circuit construction is straightforward. To call the sub-circuit, we use 

the “X” notation for the sub-circuit, and “cell” following the node assignment. The 
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assignment of the variables in the sub-circuit is at the end of the line (i.e. “ival” in 

this case). 

f) The identical circuit can also be constructed without the sub-circuit. This actually 

provides better accessibility for measuring the voltages or currents of each device. 

For example, in “curersj51.cir”, no sub-circuit is used, and each device is shown in 

the circuit construction script. In this way, a 0voltage voltage source can be 

assigned to any device for measuring the current of that device, which is a typical 

way of measuring currents in WRSpice®. 

B.3 The Operational Script File 

The Circuit Script file is a description of circuit diagram and type of analysis for WRSpice® 

to simulate. The Operational Script is what really carried out the simulation. Since what we 

want WRSpice® to do is simple, this script is very simple too. 

B.3.1 The Core Operational Script 

It starts with a line “.control” indicating this is an Operational script, and the second line is 

“source filepath/filename”, calling for the Circuit Script file. Up to this point, the Circuit 

Script file is loaded to the WRSpice®, and it knows what and how to analysis. The 

command “run” is to start the simulation. If you want to do something simple after the 

simulation, you can also add other command lines after the “run”. But usually I close this 

Script file here with the command line “.endc”. 
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Without additional specification, WRSpice, by default, temporarily records all voltages 

information, and all currents of voltage sources, which can be plotted or saved later. 

B.3.2 The Plotting/Saving Script 

Plotting is also an operation of WRSpice®, so this file also starts with “.control”, and ends 

with “.endc”. 

The “body” of this script is simply “plot ……”. If we are interested in the current of device 

b1, we put a 0volt voltage source v1 in series with b1, and plot the current of the voltage 

source by “plot i(v1)”. If we are interested in the voltage across device r1 which connects 

to nodes 1 and 2, the command line is simply “plot v(1)-v(2)”. To save the plotted data, 

simply click on “save” command on the side of the plotting window, and enter the filepath 

and filename in the dialog box followed by pressing “enter”. 

Saving data is similar to plotting. With the same structure started with “.control” and ended 

with “.endc”, the body is simply “write variable/or calculated numbers 

filepath/filename”. 

B.3.3 How to Operate WRSpice® 

When WRSpice is started, there will be 2 windows prompt out. One is small and with tool 

bar on top like normal windows program (setting window), the other is the command line 

window like the MSDOS prompt window (command window). 
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a) Define the data size  

As mentioned above, the data size is determined by the “time” and “time step” in 

the transient analysis.  

Therefore, before using the WRSpice®, it is suggested to set the virtual memory of 

the machine to the maximum (4GB). When WRSpice® is started, before running 

any script, adjust the “max data size” setting in WRSpice® to 4GB as well. This 

can be done by clicking the “tools” on the tool bar of the setting window and 

selecting “Sim Def” in the drop-down list. Then a windows will show up with the 

default setting of “max data size” of 32MB (shown as 32000 in the text box). 

Change this number to 4000000 (i.e. 4GB), and check the “set” check box. Then 

click on “dismiss” bottom to close this window. Now the “max data size” should 

have been set to 4GB. 

b) The way that WRSpice calls for a script file is to use “source” command. To start 

the simulation, type in “source filepath/filename”, where the filename is the Core 

Operational Script file, in the command window. When the simulation is finished, 

then type in “source filepath/filename”, where the filename is the Plotting Script 

file, to plot the desired data, and use the “save” bottom on the plot window to save 

the data to desired files.  

Due the limitation of the physical and virtual memory, it is suggested not to plot 

more than 25 plots at once. Save the data immediately after plotting them. Close the 
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plot window, which is saved immediately after saving it, by clicking “dismiss”. 

However, if the window position has been moved on the screen, DO NOT close the 

window after saving the data, or it may freeze the WRSpice program. Just leave the 

window on the screen. 

B.3.4 About System Resources 

Since my WRSpice® simulation consumes tremendous system resources, it is worth noting 

that plotting certainly consumes more memory. If it is not necessary to view how the data 

looks before saving, it is suggested saving the data directly via “Saving Script”. An 

example can be given to see how much more efficient it is via using “Saving Script”. Since 

I have 1000 junctions in my circuit array, when I want to save information of each junction 

separately, I have to perform “plotting + saving” or “saving” 1000 times. If I do it via the 

“Plotting Script” then saving the data via the bottom on the plot, with extreme care as 

mentioned above, I can save at most ~120 files in one simulation. Then the WRSpice® is 

frozen, and needed to restart and re-simulate again. If I do it via the “Saving Script”, I can 

save more than 600 files at one time, before the virtual memory runs out, and I have to 

restart the program and re-simulate again.  

This comparison clearly shows that “Saving Script” is much more efficient than “Plotting 

Script” if viewing the plot of data is not necessary before saving it. 

If repeated simulations of different circuit files are to be performed, the command “free” is 

useful in erasing the loaded circuit and all recorded data, including plots, from the virtual 
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memory so that it can be used for next simulation. An example of using this command can 

be found in the file “runall.cir”. 
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